Proof of Corollary 1.3 getdocf0f4. 363KB Jun 04 2011 12:05:10 AM

For γ 0 E ” exp € γ|φx − x| ⠊— 6 1 + Z ∞ 1 ψ 1 γ log t 1 β d t = 1 + γβ Z ∞ ψs e γs β s β−1 ds , where, using 1.13, the last integral is finite for γ a. Taking γ = δ c 2 and δ sufficiently smal we arrive at the conclusion that uniformly in x, E r φx, φ y p 1 p 6 c 3 exp € c 3 |x − y| ⠊ =: er x, y . Clearly, er x, y defines a transient resistor network on Z d and the same claim for r x, y follows from monotonicity. This ends the proof of Part ii of Theorem 1.2. Proof of Theorem 1.2 Part iii. Here we use the criterion given in Lemma 2.2 with S = Z d . With this choice of S we have that V ′ x ⊂ {x} ∪ S ∩ Q x,1 , x ∈ Z d . Recalling definition 1.15 we see that for all x 6= y in Z d , E    X u ∈V ′ x X v ∈V ′ y ϕ|u − v|    6 c 1 ϕ x, y E ” 1 + SQ x,1 1 + SQ y,1 — . Using Schwarz’ inequality and condition 1.14 the last expression is bounded above by c 2 ϕ x, y. This implies condition 2.4 and therefore the a.s. recurrence of S, ϕ.

2.2 Proof of Corollary 1.3

We start with some estimates on the function ψt. Observe that, for Poisson point processes PPPλ, one has ψt = e −λ t d . A similar estimate holds for a stationary DPP. More generally, for DPP we shall use the following facts. Lemma 2.4. Let P be a determinantal point process on R d with kernel K. Then the function ψt defined in 1.10 equals ψt = sup x ∈Z d Y i 1 − λ i Bx, t , 2.13 where λ i B denote the eigenvalues of K 1 B for any bounded Borel set B ⊂ R d . In particular, condition 1.12 is satisfied if exp n − Z Bx,t Ku, udu o 6 C t −γ , t 0 , x ∈ Z d , 2.14 for some constants C 0 and γ 3d + α. If P is a stationary DPP then ψt 6 e −δ t d , t 0, for some δ 0. Finally, condition 1.14 reads sup x ∈Z d nX i λ i Qx, 1 + X i X j: j 6=i λ i Qx, 1λ j Qx, 1 o ∞ . 2.15 In particular, condition 1.14 always holds if P is a stationary DPP. 2594 Proof. It is known see [4] and [24] that, for each bounded Borel set B ⊂ R d , the number of points SB has the same law as the sum P i B i , B i ’s being independent Bernoulli random variables with parameters λ i B. This implies identity 2.13. Since 1 − x 6 e −x , x 0, we can bound the r.h.s. of 1.10 by Q i e −λ i B = e −TrK 1 B . This identity and 1.4 imply 2.14. If the DPP is stationary then Ku, u ≡ K0 0 and therefore ψt 6 e −K0 t d . Finally, 2.15 follows from the identity E[SQx, 1 2 ] = P i λ i Qx, 1 + P i P j: j 6=i λ i Qx, 1λ j Qx, 1, again a consequence of the fact that SQx, 1 is the sum of independent Bernoulli random variables with parameters λ i Qx, 1. Since the sum of the λ i Qx, 1’s is finite, E[SQx, 1 2 ] ∞ for any x ∈ Z d . If the DPP is stationary it is uniformly finite. The next lemma allows to estimate ψt in the case of percolation clusters. Lemma 2.5. Let P be the law of the infinite cluster in super–critical Bernoulli site or bond percolation in Z d , d 2. Then there exist constants k, δ 0 such that e −δ −1 n d −1 6 ψn 6 k e −δ n d −1 , n ∈ N . Proof. The lower bound follows easily by considering the event that e.g. the cube centered at the origin with side n has all the boundary sites or bonds unoccupied. To prove the upper bound one can proceed as follows. Let K n γ, γ 0, denote the event that there exists an open cluster C inside the box Bn = [ −n, n] d ∩ Z d such that |C| γ n d . Known estimates see e.g. Lemma 11.22 in Grimmett’s book [16] for the case d = 2 and Theorem 1.2 of Pisztora’s [23] for d 3 imply that there exist constants k 1 , δ 1 , γ 0 such that P K n γ c 6 k 1 e −δ 1 n d −1 . 2.16 On the other hand, let C x denote the open cluster at x ∈ Z d and write C ∞ for the infinite open cluster. From [16, Theorem 8.65] we have that there exist constants k 2 , δ 2 such that for any x ∈ Z d and for any γ 0: P γ n d 6 |C x | ∞ 6 k 2 e −δ 2 n d −1 . 2.17 Now we can combine 2.16 and 2.17 to prove the desired estimate. For any n we write P Bn ∩ C ∞ = ; 6 PBn ∩ C ∞ = ; ; K n γ + PK n γ c . The last term in this expression is bounded using 2.16. The first term is bounded by P ∃x ∈ Bn : γ n d 6 |C x | ∞ 6 X x ∈Bn P γ n d 6 |C x | ∞ . Using 2.17 we arrive at PBn ∩ C ∞ = ; 6 k e −δ n d −1 for suitable constants k, δ 0. We are now ready to finish the proof of Corollary 1.3. It is clear from the previous lemmas that in all cases we have both conditions 1.12 and 1.14. Moreover it is easily verified that Z d , ϕ and Z d , ϕ p, α have the same type, when ϕ is defined by 1.15 with ϕ = ϕ p, α . This ends the proof of Corollary 1.3. 2595

2.3 Proof of Corollary 1.4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52