Proof of Theorem 1.5 getdocf0f4. 363KB Jun 04 2011 12:05:10 AM

the results will follow once we prove that, for Γ, ρ, the effective resistance from 0 to Q c 0,2n = {u ∈ Z d : kuk ∞ n} satisfies the desired bounds. From now on we consider the cases d = 1 and d = 2 separately.

3.1 Proof of Theorem 1.5

Set d = 1. We further reduce the network Γ, ρ introduced above by collapsing into a single node ev each pair {v, −v}. This gives a network on {0, 1, 2, . . . } where across each pair 0 6 i j there are now e Γ i e Γ j wires, where e Γ i := Γ i + Γ −i i 6= 0 and e Γ := Γ recall that by Γ we now mean the original Γ plus 1. Each of these wires has a resistance at least ρ i, j and thus we further reduce the network by assigning each wire the same resistance ρ i, j . We shall call e Γ, ρ this new network and e R n 0 its effective resistance from 0 to Q c 0,2n . An application of the variational formula 1.6 to the network e Γ, ρ yields the upper bound e R n −1 = e C n 0 6 1 f 2 n n X i=0 ∞ X j=i+1 e Γ i e Γ j j − i −1−α f j − f i 2 , 3.1 for any sequence { f i } i 0 such that f i = f i, f being a non–decreasing function on [0, ∞ taking the value 0 at the origin only. Next, we choose f as f x := Z x g α td t, g α t := ‚ 1 + Z t ‚ 1 ∧ s 2 s 1+ α Œ ds Œ −1 . 3.2 Note that f satisfies the differential equation f ′ t 2 ‚ 1 + Z t ‚ 1 ∧ s 2 s 1+ α Œ ds Œ = f ′ t . 3.3 Moreover, f is increasing on [0, ∞, f 0 = 0 and f k = f k behaves as f k ∼        log k if α = 1 , k α−1 if 1 α 2 , k log k if α = 2 , k if α 2 . 3.4 Here f k ∼ a k means that there is a constant C 1 such that C −1 a k 6 f k 6 C a k , for all k C. Since g α is non–increasing we have the concavity bounds f j − f i 6 g α i j − i , j i 0 . 3.5 Let us first prove the theorem for the easier case α 2. We point out that here we do not need condition 1.17 and a finite first moment condition suffices. Indeed, set ξ i := P j i j − i 1 −α e Γ j . These random variables are identically distributed and have finite first moment since α 2. Note that e Γ i and ξ i are independent so that E[Γ i ξ i ] ∞. From the ergodic theorem it follows that there exists a constant C such that P–a.s. n X i=0 e Γ i ξ i 6 C n , 2597 for all n sufficiently large. Due to 3.1, we conclude that e C n 0 6 n −2 P n i=0 e Γ i ξ i 6 C n −1 and the desired bound e R n 0 c n follows. The case 1 6 α 6 2 requires more work. Thanks to our choice of f , we shall prove the following deterministic estimate. Lemma 3.1. There exists a constant C ∞ such that for any α 1 X i := ∞ X j=i+1 j − i −1−α f j − f i 2 6 C g α i , i ∈ N . 3.6 Let us assume the validity of Lemma 3.1 for the moment and define the random variables ξ i := ∞ X j=i+1 e Γ j j − i −1−α f j − f i 2 . Let us show that P-a.s. ξ i satisfies the same bound as X i in Lemma 3.1. Set Λ λ := log E[e λe Γ i ]. From assumption 1.17 we know Λ λ ∞ for all λ 6 ǫ for some ǫ 0. Moreover, Λλ is convex and Λ λ 6 c λ for some constant c, for all λ 6 ǫ. Therefore, using Lemma 3.1 we have, for some new constant C: E [e a i ξ i ] = Y j i exp ” Λa i j − i −1−α f j − f i 2 — 6 Y j i exp ” c a i j − i −1−α f j − f i 2 — = exp [c a i X i ] 6 exp [C a i g α i] , 3.7 provided the numbers a i 0 satisfy a i j − i −1−α f j − f i 2 6 ǫ for all j i 0. Note that the last requirement is satisfied by the choice a i := ǫg α i 2 since, using 3.5: a i j − i −1−α f j − f i 2 6 a i j − i 1 −α g α i 2 6 a i g α i 2 , for j i, α 1. This will be our choice of a i for 1 6 α 6 2. From 3.7 we have P ξ i 2c 1 ǫ −1 g α i 6 exp −2a i c 1 ǫ −1 g α iE[e a i ξ i ] 3.8 6 exp −2c 1 ǫ −1 a i g α i exp C a i g α i 6 e −c 1 ǫ g α i −1 , if c 1 is large enough. Clearly, g α i 6 Clog i −1 for 1 6 α 6 2 and i large enough. Therefore, if c 1 is sufficiently large, the left hand side in 3.8 is summable in i ∈ N and the Borel Cantelli lemma implies that P–a.s. we have ξ i 6 c 2 g α i, c 2 := 2c 1 ǫ −1 , for all i i , where i is an a.s. finite random number. Next, we write n X i=0 ∞ X j=i+1 e Γ i e Γ j j − i −1−α f j − f i 2 6 i X i=0 e Γ i ξ i + c 2 n X i=1 e Γ i g α i . 3.9 The first term is an a.s. finite random number. The second term is estimated as follows. First, note that n X i=1 g α i 6 f n , 3.10 2598 since by concavity f n = n −1 X j=0 f j+1 − f j n −1 X j=0 g α j + 1 = n X j=1 g α i . Then we estimate P n X i=1 e Γ i g α i 2c 3 f n 6 e −2c 3 f n n Y i=1 E [e e Γ i g α i ] = e −2c 3 f n e P n i=1 Λg α i . If i is large enough so that g α i 6 ǫ we can estimate Λg α i 6 c g α i. Using 3.10 we then have, for c 3 large enough P n X i=1 e Γ i g α i 2c 3 f n 6 e −c 3 f n . Since f n log n for all α 1 we see that, if c 3 is sufficiently large, the Borel Cantelli lemma implies that the second term in 3.9 is P–a.s. bounded by 2c 3 f n for all n n for some a.s. finite random number n . Recalling 3.1 we see that there exists an a.s. positive constant c 0 such that e R n 0 c f n . The proof of Theorem 1.5 is thus complete once we prove the deterministic estimate in Lemma 3.1. Proof of Lemma 3.1. We only need to consider the cases α ∈ [1, 2]. We write X i = 2i X j=i+1 f j − f i 2 j − i 1+ α + X j 2i f j − f i 2 j − i 1+ α . 3.11 We can estimate the first term of the right–hand side by using the concavity of f and equation 3.3: 2i X j=i+1 f j − f i 2 j − i 1+ α 6 g 2 α i i X k=1 k 2 k 1+ α 6 C g α i 3.12 for some positive constant C. As far as the second term is concerned, first observe that f j − f i j − i is non-increasing in j by the concavity of f and so is the general term of the series. As a consequence X j 2i f j − f i 2 j − i 1+ α 6 Z +∞ 2i f x − f i 2 x − i 1+ α d x . 3.13 In the case α = 1 we get, for any i 1, X j 2i f j − f i 2 j − i 1+ α 6 Z +∞ 2i 1 x − i ln 1 + x 1 + i 2 d x 6 1 i Z +∞ 2i ‚ 1 x i − 1 ln x i Œ 2 d x i 6 2g α i Z +∞ 2 ln t t − 1 2 d t . 3.14 In the case α 1 we have, X j 2i f j − f i 2 j − i 1+ α 6 2 1+ α Z +∞ 2i f 2 x x 1+ α d x , 3.15 2599 so that, for 1 α 2, there are two positive constants C and C ′ such that X j 2i f j − f i 2 j − i 1+ α 6 2 1+ α Z +∞ 2i C 2 x 2 α−2 x 1+ α d x 6 2 1+ α C 2 2 − α 2i α−2 6 C ′ g α i 3.16 and, for α = 2, there are two positive constants C and C ′ such that X j 2i f j − f i 2 j − i 1+ α 6 8 Z +∞ 2i C 2 x log 2 x d x 6 8C 2 log 2i 6 C ′ g α i . 3.17

3.2 Proof of Theorem 1.6

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52