Proof of Theorem 1.2 getdocf0f4. 363KB Jun 04 2011 12:05:10 AM

z n , i.e. the net current flowing in the network when a unit voltage is applied across 0 and z n . Since S , ϕ is recurrent we know that cS 0,n → 0, n → ∞. Recall that cS 0,n satisfies cS 0,n = 1 2 X x, y ∈S ϕ |x − y|ψ n x − ψ n y 2 , 2.5 where ψ n is the electric potential, i.e. the unique function on S that is harmonic in S 0,n , takes the value 1 at 0 and vanishes outside of S 0,n . Given S ∈ Ω, set e S n = ∪ x ∈S 0,n V ′ x . Note that e S n is an increasing sequence of finite sets, covering all S. Collapse all sites in e S n c into a single site ez n and call ce S n the effective conductance between 0 and ez n by construction 0 ∈ e S n . From the Dirichlet principle 1.6 we have ce S n 6 1 2 X u,v ∈e S ϕ|u − v|gu − gv 2 , for any g : e S → [0, 1] such that g0 = 1 and g = 0 on e S n c . Choosing gu = ψ n φ ′ u we obtain ce S n 6 1 2 X x, y ∈S ψ n x − ψ n y 2 X u ∈V ′ x X v ∈V ′ y ϕ|u − v| . From the assumption 2.4 and the recurrence of S , ϕ implying that 2.5 goes to zero, we deduce that E[ce S n ] → 0, n → ∞. Since ce S n is monotone decreasing we deduce that ce S n → 0, P –a.s. This implies the P–a.s. recurrence of e S, ϕ and the claim follows.

2.1 Proof of Theorem 1.2

We first prove part i of the theorem, by applying the general statement derived in Lemma 2.1 in the case S = Z d and ϕ = ϕ p, α . Since S , ϕ p, α is transient whenever d 3, or d = 1, 2 and α d the classical proof of these facts through harmonic analysis is recalled in Appendix B, we only need to verify condition 2.1. For the moment we only suppose that ψt 6 C ′ t −γ for some γ 0. Let us fix p, q 1 s.t. 1p + 1q = 1. Using Hölder’s inequality and then Schwarz’ inequality or simply using Hölder inequality with the triple 1 2q, 12q, 1p, we obtain E N φxN φ y rφx, φ y 2.6 6 E ” N φx 2q — 1 2q E ” N φ y 2q — 1 2q E r φx, φ y p 1 p for any x 6= y in Z d . By assumption 1.11 we know that r φx, φ y p 6 c r p, α φx, φ y p := c 1 ∨ |φx − φ y| pd+ α . 2.7 We shall use c 1 , c 2 , . . . to denote constants independent of x and y below. From Jensen’s inequality |φx − φ y| pd+ α 6 c 1 € |φx − x| pd+ α + |x − y| pd+ α + |φ y − y| pd+ α Š . 2591 From 2.7 and the fact that |x − y| 1 we derive that E r φx, φ y p 6 c 2 sup z ∈Z d E ” |φz − z| pd+ α — + c 2 |x − y| pd+ α . 2.8 Now we observe that |φz − z| t if and only if B z,t ∩ S = ;. Hence we can estimate E ” |φz − z| pd+ α — 6 1 + Z ∞ 1 ψ  t 1 pd+ α ‹ d t 6 1 + C Z ∞ 1 t − γ pd+ α d t 6 c 3 , provided that γ pd + α. Therefore, using |x − y| 1, from 2.8 we see that for any x 6= y in Z d : E r φx, φ y p 1 p 6 c 4 r p, α x, y . 2.9 Next, we estimate the expectation E ” N φx 2q — from above, uniformly in x ∈ Z d . To this end we shall need the following simple geometric lemma. Lemma 2.3. Let Ex, t be the event that S ∩ Bx, t 6= ; and S ∩ Bx ± 3 p d t e i , t 6= ;, where {e i : 1 6 i 6 d } is the canonical basis of R d . Then, on the event Ex, t we have φx ∈ Bx, t, i.e. |φx − x| t, and z 6∈ V φx for all z ∈ R d such that |z − x| 9d p d t Assuming for a moment the validity of Lemma 2.3 the proof continues as follows. From Lemma 2.3 we see that, for a suitable constant c 5 , the event N φx c 5 t d implies that at least one of the 2d +1 balls Bx, t, Bx ±3 p d t e i , t must have empty intersection with S. Since Bx ±⌊3 p d t ⌋e i , t − 1 ⊂ Bx ± 3 p d t e i , t for t 1, we conclude that P ” N φx c 5 t d — 6 2d + 1ψt − 1 , t 1. Taking c 6 such that c − 1 d 5 c 1 2qd 6 = 2, it follows that E ” N φx 2q — = Z ∞ P N φx 2q td t 6 c 6 + 2d + 1 Z ∞ c 6 ψ c − 1 d 5 t 1 2qd − 1 d t 6 c 6 + c 7 Z ∞ 1 t − γ 2qd d t 6 c 8 , 2.10 as soon as γ 2qd. Due to 2.6, 2.9 and 2.10, the hypothesis 2.1 of Lemma 2.1 is satisfied when ψt 6 C t −γ for all t 1, where γ is a constant satisfying γ pd + α , γ 2qd = 2pd p − 1 . We observe that the functions 1, ∞ ∋ p 7→ pd + α and 1, ∞ ∋ p 7→ 2pd p −1 are respectively increasing and decreasing and intersect in only one point p ∗ = 3d+ α d+ α . Hence, optimizing over p, it is enough to require that γ inf p 1 max {pd + α, 2pd p − 1 } = p ∗ d + α = 3d + α . 2592 This concludes the proof of Theorem 1.2 i. Proof of lemma 2.3. The first claim is trivial since S ∩ Bx, t 6= ; implies φx ∈ Bx, t. In order to prove the second one we proceed as follows. For simplicity of notation we set m := 3 p d and k := 9d. Let us take z ∈ R d with |z − x| k p d t. Without loss of generality, we can suppose that x = 0, z 1 0 and z 1 |z i | for all i = 2, 3, . . . , d. Note that this implies that k p d t |z| 6 p dz 1 , hence z 1 kt. Since min u ∈B0,t |z − u| = |z| − t max u ∈Bmte 1 ,t |z − u| 6 |z − mte 1 | + t , if we prove that |z| − |z − mte 1 | 2t , 2.11 we are sure that the distance from z to each point in S ∩ B0, t is larger than the distance from z to each point of S ∩ Bmte 1 , t. Hence it cannot be that z ∈ V φ0 . In order to prove 2.11, we first observe that the map 0, ∞ ∋ x 7→ p x + a − p x + b ∈ 0, ∞ is decreasing for a b. Hence we obtain that |z| − |z − mte 1 | p dz 1 − Æ z 1 − mt 2 + d − 1z 2 1 . Therefore, setting x := z 1 t, we only need to prove that p d x − p x − m 2 + d − 1x 2 2 , ∀x k . By the mean value theorem applied to the function f x = p x p d x − p x − m 2 + d − 1x 2 1 2 p d x € d x 2 − x − m 2 − d − 1x 2 Š = 2x m − m 2 2 p d x m p d − m 2 k = 2 . This completes the proof of 2.11. Proof of Theorem 1.2 Part ii. We use the same approach as in Part i above. We start again our estimate from 2.6. Moreover, as in the proof of 2.10 it is clear that hypothesis 1.13 implies E [N φx 2q ] ∞ for any q 1, uniformly in x ∈ Z d . Therefore it remains to check that r x, y := E r φx, φ y p 1 p , 2.12 defines a transient resistor network on Z d , for any d 3, under the assumption that r φx, φ y 6 C e δ|φx−φ y| β . For any β 0 we can find a constant c 1 = c 1 β such that r φx, φ y 6 C exp € δ c 1 ” |φx − x| β + |x − y| β + |φ y − y| β —Š . Therefore, using Schwarz’ inequality we have E r φx, φ y p 1 p 6 c 2 exp € δ c 2 |x − y| ⠊ E ” exp € δ c 2 |φx − x| ⠊— 1 2 E ” exp € δ c 2 |φ y − y| ⠊— 1 2 . 2593 For γ 0 E ” exp € γ|φx − x| ⠊— 6 1 + Z ∞ 1 ψ 1 γ log t 1 β d t = 1 + γβ Z ∞ ψs e γs β s β−1 ds , where, using 1.13, the last integral is finite for γ a. Taking γ = δ c 2 and δ sufficiently smal we arrive at the conclusion that uniformly in x, E r φx, φ y p 1 p 6 c 3 exp € c 3 |x − y| ⠊ =: er x, y . Clearly, er x, y defines a transient resistor network on Z d and the same claim for r x, y follows from monotonicity. This ends the proof of Part ii of Theorem 1.2. Proof of Theorem 1.2 Part iii. Here we use the criterion given in Lemma 2.2 with S = Z d . With this choice of S we have that V ′ x ⊂ {x} ∪ S ∩ Q x,1 , x ∈ Z d . Recalling definition 1.15 we see that for all x 6= y in Z d , E    X u ∈V ′ x X v ∈V ′ y ϕ|u − v|    6 c 1 ϕ x, y E ” 1 + SQ x,1 1 + SQ y,1 — . Using Schwarz’ inequality and condition 1.14 the last expression is bounded above by c 2 ϕ x, y. This implies condition 2.4 and therefore the a.s. recurrence of S, ϕ.

2.2 Proof of Corollary 1.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52