Proof of Proposition 1.7 getdocf0f4. 363KB Jun 04 2011 12:05:10 AM

where we have used the estimate X a 1 i a 1 b 1 − a 1 −α 6 i X a 1 i b 1 − a 1 −α 6 C i b 1 − i + 1 1 −α , and the fact that, for α 2, we have X b 1 i b −1 1 b 1 − i + 1 2 −2α 6 i −1 ∞ X k=1 k −2 = Ci . We remark that a proof of Theorem 1.6 could be obtained by application of the variational principle 1.6 as in the proof of Theorem 1.5. To see this one can start from the network Γ, ρ introduced at the beginning of this section and choose a trial function that is constant in each F a . Then, for any non–decreasing sequence f , f 1 , . . . such that f = 0 and f k 0 eventually, one has R n x A n f where A n f = f −2 n n X a=0 ∞ X b=a+1 f b − f a 2 X u ∈F a Γ u X v ∈F b Γ v |v − u| −2−α . 3.26 One then choose f k = log1 + k for α 2 and f k = logloge + k for α = 2 and the desired conclusions will follow from suitable control of the fluctuations of the random sum appearing in 3.26. Here the analysis is slightly more involved than that in the proof of Theorem 1.5 and it requires estimates as in 3.24 above. Moreover, one needs a fifth moment assumption with this approach instead of the fourth moment condition 1.18. Under this assumption, and using Lemma A.1, it is possible to show that there a.s. exists a constant c such that X u ∈F a Γ u X v ∈F b Γ v |v − u| −2−α 6 c a b − a −1−α , a b . 3.27 Once this estimate is available the proof follows from simple calculations. 4 Proof of Proposition 1.7 and Theorem 1.8

4.1 Proof of Proposition 1.7

The proof of Proposition 1.7 is based on the following technical lemma related to renewal theory: Lemma 4.1. Given δ 1, define the probability kernel q k = cδk −δ k ∈ N , 4.1 c δ being the normalizing constant 1 P k 1 k −δ and define recursively the sequence f n as f 0 = 1 , f n = P n −1 k=0 f kq n −k , n ∈ N . If 1 δ 2, then lim n ↑∞ n 2 −δ f n = Γ2 − δ Γδ − 1 . 4.2 2603 Proof. Let {X i } i 1 be a family of IID random variables with PX i = k = q k , k ∈ N. Observe now that PX i k = P ∞ s=k q s ∼ c k 1 −δ since δ 1. In particular, if 1 δ 2 we can use Theorem B of [10] and get 4.2 with un instead f n, where un is defined as follows: Consider the random walk S n on the set N ∪ {0}, starting at 0, S = 0, and defined as S n = X 1 + X 2 + · · · + X n for n 1. Given n ∈ N define un as un := E ” {m 0 : S m = n} — = ∞ X m=0 PS m = n . Trivially u0 = 1, while the Markov property of the random walk S n gives for n 1 that un = ∞ X m=1 n −1 X k=0 PS m −1 = k, S m = n = ∞ X m=1 n −1 X k=0 PS m −1 = kq n −k = n −1 X k=0 ukq n −k . Hence, f n and un satisfy the same system of recursive identities and coincide for n = 0, thus implying that f n = un for each n ∈ N. We have now all the tools in order to prove Proposition 1.7: Proof of Proposition 1.7. We shall exhibit a finite energy unit flux f ·, · from x to infinity in the network S, ϕ. To this end we define f ·, · as follows f x i , x k =    f iq k −i if 0 6 i k , − f x k , x i if 0 6 k i , otherwise , 4.3 where f m, q m are defined as in the previous lemma for some δ ∈ 1, 2 that will be fixed below. Since ϕ Cϕ p, α , the energy E f dissipated by the flux f ·, · is E f = ∞ X n=0 ∞ X k=n+1 f x n , x k 2 ϕ|x n − x k | 6 c ∞ X n=0 ∞ X k=n+1 r p, α x k , x n f n q k −n 2 , 4.4 where r p, α x, y := 1ϕ p, α |x − y|. Hence, due to the previous lemma we obtain that E f 6 c ∞ X n=0 ∞ X k=n+1 r p, α x k , x n 1 + n 2 δ−4 k − n −2δ . In order to prove that the energy E f is finite P–a.s., it is enough to show that EE f is finite for some δ ∈ 1, 2. To this end we observe that, due to assumption 1.22 and since r p, α x k , x n = 1 ∨ x n − x k 1+ α , for suitable constants c 1 , c 2 , E E f 6 c 1 ∞ X n=0 1 + n 2 δ−4 ∞ X u=1 ” 1 + E |x u − x | 1+ α — u −2δ 6 c 2 ∞ X n=1 1 + n 2 δ−4 ∞ X u=1 u 1+ α−2δ . 4.5 2604 Hence, the mean energy is finite if 2 δ−4 −1 and 1+α−2δ −1. In particular, for each α ∈ 0, 1 one can fix δ ∈ 1, 2 satisfying the conditions above. This concludes the proof of the transience of S, ϕ for P–a.a. S. It remains to verify assumption 1.22 whenever P is a renewal point process such that Ex 1 − x 1+ α ∞. To this end we observe that, by convexity, x u − x 1+ α = u 1+ α 1 u u −1 X k=0 x k+1 − x k 1+ α 6 u 1+ α 1 u u −1 X k=0 x k+1 − x k 1+ α . Since by the renewal property x k+1 − x k k 0 is a sequence of i.i.d. random variables, the mean of the last expression equals u 1+ α E x 1 − x 1+ α = cu 1+ α . Therefore, 1.22 is satisfied.

4.2 Proof of Theorem 1.8

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52