v = v from above by constant C. By

Proof. We first show that E φ i 6 Cω i , where ω i = i if α 2 and ω i = i log i if α = 2, where E denotes expectation w.r.t. the field {Γ u , u ∈ Z 2 }. Thanks to Lemma A.1 given in the Appendix, from 3.18 we have E φ i 6 c 1 X a i X b i ab − a −α . 3.20 Next we estimate P b i b − a −α 6 c 2 i − a 1 −α , so that, using the Riemann integral, we obtain E φ i 6 c 2 X a i ai − a 1 −α = c 2 i 2 −α X a i a i  1 − a i ‹ 1 −α 6 c 3 i 3 −α Z 1 − 1 i y1 − y 1 −α d y 6 c 3 i 3 −α Z 1 1 i y 1 −α d y 6 c 4 ω i . Hence, for C large we can estimate P φ i 2C ω i 6 Pφ i − Eφ i Cω i 6 C ω i −4 E h φ i − Eφ i 4 i , 3.21 where we use P to denote the law of the variables {Γ u }. The proof then follows from the Borel– Cantelli Lemma and the following estimate to be established below: There exists C ∞ such that, for all i ∈ N, E h φ i − Eφ i 4 i 6 C i 2 . 3.22 To prove 3.22 we write E h φ i − Eφ i 4 i = X a X b X u ∼a X v ∼b Φu, v Gu, v , 3.23 where the sums are over a = a 1 , . . . , a 4 , b = b 1 , . . . , b 4 such that a k i 6 b k , u ∼ a stands for the set of u = u 1 , . . . , u 4 such that u k ∈ F a k , and we have defined, for u ∼ a, v ∼ b: Φu, v = 4 Y k=1 b k − a k ρ u k ,v k , G

u, v =

4 Y k=1 € Γ u k Γ v k − E[Γ u k Γ v k ] Š . From the independence assumption on the field {Γ u } we know that Gu, v = 0 unless for every k = 1, . . . , 4 there exists a k ′ = 1, . . . , 4 with k 6= k ′ and {u k , v k } ∩ {u k ′ , v k ′ } 6= ;. Moreover, when this condition is satisfied using 1.18 we can easily bound G

u, v from above by constant C. By

symmetry we may then estimate X a X b X u ∼a X v ∼b Φu, v Gu, v 6 C X a X b X u ∼a X v ∼b Φu, v χ ∀k ∃k ′ 6= k : {u k , v k } ∩ {u k ′ , v k ′ } 6= ; 6 3 C X a X b X u ∼a X v ∼b Φu, v h χ u 1 = u 2 ; u 3 = u 4 + + χ u 1 = u 2 ; v 3 = v 4 + χ v 1 = v 2 ; v 3 = v 4 i . 3.24 2601 We claim that each of the three terms in the summation above is of order i 2 as i grows. This will prove the desired estimate 3.22. The first term in 3.24 satisfies X a X b X u ∼a X v ∼b Φu, v χ u 1 = u 2 ; u 3 = u 4 6 Ai 2 , 3.25 where Ai := X a 1 i X b 1 i X b 2 i b 1 − a 1 b 2 − a 1 X u 1 ∈F a1 X v 1 ∈F b1 X v 2 ∈F b2 ρ u 1 ,v 1 ρ u 1 ,v 2 . Similarly the third term in 3.24 is bounded above by Bi 2 , with Bi := X a 1 i X a 2 i X b 1 i b 1 − a 1 b 1 − a 2 X u 1 ∈F a1 X u 2 ∈F a2 X v 1 ∈F b1 ρ u 1 ,v 1 ρ u 2 ,v 1 . Finally, the middle term in 3.24 is less than or equal to the product AiBi. Therefore, to prove 3.22 it suffices to show that Ai 6 C i and Bi 6 C i. Using Lemma A.1 we see that X u 1 ∈F a1 X v 1 ∈F b1 X v 2 ∈F b2 ρ u 1 ,v 1 ρ u 1 ,v 2 6 C a 1 b 1 − a 1 −1−α b 2 − a 1 −1−α . This bound yields Ai 6 C X a 1 i a 1 i − a 1 2 −2α , for some new constant C, where we have used the fact that X b 2 i b 2 − a 1 −α 6 Ci − a 1 1 −α . Using the Riemann integral we obtain X a 1 i a 1 i − a 1 2 −2α 6 C i 4 −2α Z 1 −1i x1 − x 2 −2α d x 6 C i 4 −2α Z 1 1 i x 2 −2α d x 6 2 α − 3C i . This proves that Ai = Oi. Similarly, from Lemma A.1 we see that X u 1 ∈F a1 X u 2 ∈F a2 X v 1 ∈F b1 ρ u 1 ,v 1 ρ u 2 ,v 1 6 C b −1 1 a 1 a 2 b 1 − a 1 −1−α b 1 − a 2 −1−α . Therefore Bi 6 C X b 1 i b −1 1    X a 1 i a 1 b 1 − a 1 −α    2 6 C ′ i 2 X b 1 i b −1 1 b 1 − i + 1 2 −2α 6 C ′′ i , 2602 where we have used the estimate X a 1 i a 1 b 1 − a 1 −α 6 i X a 1 i b 1 − a 1 −α 6 C i b 1 − i + 1 1 −α , and the fact that, for α 2, we have X b 1 i b −1 1 b 1 − i + 1 2 −2α 6 i −1 ∞ X k=1 k −2 = Ci . We remark that a proof of Theorem 1.6 could be obtained by application of the variational principle 1.6 as in the proof of Theorem 1.5. To see this one can start from the network Γ, ρ introduced at the beginning of this section and choose a trial function that is constant in each F a . Then, for any non–decreasing sequence f , f 1 , . . . such that f = 0 and f k 0 eventually, one has R n x A n f where A n f = f −2 n n X a=0 ∞ X b=a+1 f b − f a 2 X u ∈F a Γ u X v ∈F b Γ v |v − u| −2−α . 3.26 One then choose f k = log1 + k for α 2 and f k = logloge + k for α = 2 and the desired conclusions will follow from suitable control of the fluctuations of the random sum appearing in 3.26. Here the analysis is slightly more involved than that in the proof of Theorem 1.5 and it requires estimates as in 3.24 above. Moreover, one needs a fifth moment assumption with this approach instead of the fourth moment condition 1.18. Under this assumption, and using Lemma A.1, it is possible to show that there a.s. exists a constant c such that X u ∈F a Γ u X v ∈F b Γ v |v − u| −2−α 6 c a b − a −1−α , a b . 3.27 Once this estimate is available the proof follows from simple calculations. 4 Proof of Proposition 1.7 and Theorem 1.8

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52