Group Membership IP Multicast Networks
10.1.4 Group Membership
Although IGMP does a good job of managing groups at the network layer, it does not include application- level functionality. That is, it allows individual devices to join existing groups only if they know the multicast IP address corresponding to that group. It does not provide a way for users to find out what multicast services are offered. It cannot determine the dynamically generated, multicast IP address for a particular application. Suppose, for example, that a user wants to join a multicast group that disseminates a news service. This service might be set up so that it always uses the same multicast IP address. In this case, the application can simply have this static address hardcoded into its configuration. If this application uses dynamically generated addresses or if the client application simply doesnt know the multicast address, then none of the protocols discussed so far provide a way for it to learn this information. This deficiency is well known, and a group within the IETF called the Multiparty Multimedia Session Control Working Group MMUSIC is currently working on solving it. The focus of this group is to develop protocols that are appropriate for large-scale multimedia applications. Small-scale applications do not have the same scaling problems as large-scale applications. If there are only three clients to a server, then it is much easier to build the application so that the server simply talks to the clients directly. The reason for the focus on multimedia applications is simply that the applications are the most likely areas where multicast transmission will be useful. MMUSIC currently has several higher-layer protocols in development used to manage groups and their members. The problems have been broken down into a number of key phases such as group creation and destruction, announcing new groups, and inviting members to join. To accomplish this task, they have 234 worked on protocols such as Session Initiation Protocol SIP, Session Description Protocol SDP, and Session Directory Announcement Protocol SDAP. As of the time of writing this book, these protocols were still not fully adopted as standards, and there were no available commercial products based on them. For the time being, multicast applications must rely on other methods for handling group membership. Thus, most applications currently work with static addressing, or the clients query a known server to find information about the multicast groups it currently uses.10.1.5 Multicast Routing
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more