Active and Stuck-in-Active Routes
6.4.2 Active and Stuck-in-Active Routes
EIGRP uses an interesting technique for keeping its routing tables up-to-date. Even though it only uses the best route, the EIGRP topology table keeps a list of every path to every subnet. This way, if the best path goes away it can select a feasible successor. But if there are no feasible successors when a route disappears, the router puts this route into an ACTIVE state and queries its neighbors to find a new path to the destination. If one or more of the neighbors knows a path to this destination network or a summary route that contains this one, they respond. But if they do not have a route, they in turn query their neighbors. Sometimes the destination is simply nowhere to be found. This can happen because a failure somewhere in the network has isolated some subnets. Sometimes the process of trying to find a new path can fail to converge. In the ever-expanding chain of queries from one router to the next, each device is waiting for a response. If the network is too large or if it contains too many high-latency sections, it may become difficult for this process to converge. If the queries for an ACTIVE route are not satisfied within the timeout period of a few minutes, the router gives the dreaded Stuck In Active message. It then clears the neighbor relationship with the router that failed to respond. This can happen either because the route has disappeared or because a communication problem has broken the chain of queries somewhere in the network. Either way, Stuck In Active represents a serious problem, particularly if it happens repeatedly. When the routers in an EIGRP network issue large numbers of Stuck In Active messages, it is important to determine where thing are getting Stuck. This is by far more serious than the ACTIVE problem, which just means that a route is missing. When these messages appear, the network engineer should find out which neighbor relationships are being reset. This could be happening anywhere in the network, not necessarily on or adjacent to the router that reports the Stuck In Active. The easiest way to find these problems is to ensure that EIGRP is configured to log neighbor status changes. Then, when the Stuck In Active messages appear, attempt to track where the neighbor relationships are flapping. In some cases the neighbors that are changing are randomly dispersed throughout the network. This may indicate that the EIGRP AS has simply become too large to be stable. This can happen particularly when the automatic route summarization features of EIGRP are not used effectively.6.4.3 Interconnecting Autonomous Systems
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more