Configuration Management Network-Management Components
Chapter 9. Network Management
Network management is an afterthought in many networks. This is a pity because the network designer can do many things to facilitate network management. In most large organizations, the job of network manager is considered operations, while network design is done by a different implementation group. Frequently, these two groups report to different departments of the company. If a network can be managed easily, then it is inherently more reliable. Thus, manageability is a fundamental design goal for a good network. Before I launch into a discussion of design implications for manageability, I need to spend some time talking about what I mean by network management.9.1 Network-Management Components
The OSI has published an official definition of network management that includes five different components: configuration management, fault management, performance management, security management, and accounting management. I usually think of performance management as being composed of two separate subcomponents. The first is a tactical performance management, and the second is the more strategic long-term capacity planning component.9.1.1 Configuration Management
Configuration management actually includes two different but related activities. The first keeps track of physical hardware, serial numbers, locations, patching information, and so forth. The second part of configuration management is the process of modifying, backing up, and restoring the software configuration of network equipment. This aspect of configuration management often becomes the focus of the whole activity. Many hardware vendors for routers and switches have excellent software for building and modifying software configurations. This software usually includes the ability to do scheduled backups of running configurations. This ability is an extremely important feature. If you have a recent configuration backup, then replacing a failed router with a new one is a fast and easy operation. Without a backup, this replacement is time consuming and usually requires an experienced engineer to reconstruct the software configuration. However, remember the physical tracking side of configuration management, especially if you deal with the configurations of Layer 2 devices such as hubs and switches. If network managers have accurate information about physical locations, MAC addresses, and cabling for end devices such as user workstations, then they can easily handle hardware moves, adds, and changes. In most organizations, business requirements force network administration to respond quickly and efficiently to requests for end- user moves and service changes. However, the cabling and hardware records are usually out-of-date, so every small move requires a technician to visit the site and carefully document the equipment and cabling. This process is expensive and slow. Unfortunately, no software can solve this problem; it is primarily a procedural issue. Technicians making changes have to keep the records up-to-date, and the cabling and patch panels have to be periodically audited to ensure accuracy of the records. However, the network designer can do much to facilitate this process. If the patch panels are well designed and there is a clear correlation between physical floor location and cable numbers, then the technicians can at least get a running start at the job.9.1.2 Fault Management
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more