VLAN Distribution Areas VLAN-Based Topologies

85 Figure 3-22. Some servers connect directly to trunk links to access several VLANs simultaneously This is certainly an interesting thing to do, but its important to understand why you would want to do this before trying it. There are different ways to achieve similar results. For example, many servers support multiple network interface cards NIC. Installing two NICs in a server and connecting them to different VLANs via different switch ports has the benefit of simpler configurations on both the switch and the server and provides higher net throughput. Alternatively, if you cant afford to use multiple physical ports for whatever reason, then you could just as easily put the server behind a router and let the traffic route to all of the different user segments. However, this strategy is cost-effective in some cases. For example, if the trunk connection is a Gigabit Ethernet link, it might be significantly less expensive than deploying a router solution, as routers with high-speed interfaces tend to be very expensive. At the same time, Gigabit Ethernet ports on switches can be costly. This strategy may be a convenient way of deploying a server for multiple user VLANs. However, this method does not scale very well. If there will be many such servers, it would likely be less expensive in the long run to build a specialized high-speed server segment behind a router. Because it is a trunk link, the different VLANs will also compete with one another for server bandwidth on this link. In previous chapters I made the point that only network devices should perform network functions. Therefore, I dont like connecting an end device to multiple VLANs, whether it is through a single port or through multiple ports. An end device should have a single connection to the network unless there is a compelling reason to do something more complicated.

3.5.3.4 VLAN Distribution Areas

One of the key concepts in building a VLAN-based network is the VLAN Distribution Area. Many networks have only one VLAN Distribution Area, but having only one in extremely large networks is not practical. It may be useful to break up the Distribution Areas of a network to improve efficiency. Figure 3- 23 shows what I mean by a Distribution Area. This example is unrealistically symmetrical but the symmetry is not relevant to the concept. 86 Figure 3-23. Distribution Areas In this diagram, four Access switches are connected to each pair of Distribution switches; Access switches A1, A2, A3 and A4 all connect to Distribution switches D1 and D2. Similarly, the next four Access switches connect to the next two Distribution switches, and so on. The central routing Core of the network allows the VLANs that appear on these various switches to connect to one another. The four VLAN Distribution Areas in this picture are arbitrarily named A, B, C, and D. There is really no need to name your Distribution Areas, but it might help to rationalize the scheme if you do so. The essential idea is that the VLAN scheme is broken up so that there is no connection between the VLANs of different areas. Why would you want to break up the scheme this way? Well, there are two main advantages to this approach. First, you may need to reuse certain VLAN numbers. This might happen because certain VLAN numbers such as VLAN 1, which is often reserved for network management purposes, are special. Or, it may happen simply because of limitations on VLAN numbering schemes on some hardware. For example, some types of switches only allow VLAN numbers up to 1000 or 1005, despite the theoretical limit of 4094 in 802.1Q. The second and more compelling reason for breaking up your VLAN Distribution Areas is to simplify your Spanning Tree configuration. The network shown in Figure 3-23 has four different Root Bridges. All traffic has to pass through the Root Bridge in Spanning Tree networks. This situation can result in wildly inefficient traffic patterns. Breaking up your hierarchical design, as in this example, allows you to control your traffic patterns so that all packets between Core and Access Levels take the most direct path. The disadvantage to building a network this way is that it makes it harder to share VLANs throughout the larger network. For example, since no trunks exist between Distribution Areas A and B, sharing VLANs between these areas is not possible. It is critically important that you thoroughly understand what VLANs need to go where when constructing a VLAN Distribution system. In most cases, it is best to build these Distribution Areas geographically. It is quite rare to find an organization that does not physically group employees performing related tasks. If there is a need for easy information sharing over the network, then chances are that this need exists for physical proximity as well. This is not true universally, of course, but most organizations attempt to group themselves this way. A logical way to build Distribution Areas would be to build on a campus LAN, or by groups of floors in a large building. 87 The other nice feature about using Distribution Areas in this way is that it tends to prevent propagation of the VLAN Spaghetti problem. It tends to force the network to use both a reasonable number of VLANs in an area as well as prevent too much geographical spreading of VLANs.

3.5.3.5 Sizing VLAN Distribution Areas