Bus topology Basic Concepts
3.1.1.1 Bus topology
In a bus topology, there is a single communication medium, which I often call the wire. It actually doesnt need to be a physical piece of wire, but a wire is a useful image. In fact, 10Base2 Ethernet looks exactly like Figure 3-1 , with a long 50 50 ohm characteristic impedance coaxial cable connecting all of the devices. Because of the analogy with 10Base2, it is customary to draw an Ethernet segment like this, with a straight line intersected at various points by the connections sometimes called taps to the various devices. In the drawing, this line the wire, or bus extends beyond the last device at each end to symbolize the fact that the bus must be terminated electrically at both ends. On a bus, any device can communicate directly with any other device and all devices see these messages. This is called a unicast. [1] Similarly, any device can send a single signal intended for all other devices on the wire. This is a broadcast. [1] This odd word, unicast, comes from the word broadcast. A broadcast is sent to everybody, a mulitcast is sent to several recipients, and a unicast is sent to just one recipient. If every device sees every signal sent by all other devices, then its pretty clear that theres nothing fancy about a broadcast. To get point-to-point unicast communication going, however, there has to be some sort of address that identifies each device uniquely. This is called the MAC address. There also has to be some sort of mechanism to ensure that all devices dont try to transmit at the same time. In Ethernet the collision detection algorithm CSMACD, which I will talk about more in Chapter 4 , prevents such a problem. The other network standard that employs this basic topology is called token bus, which works by passing a virtual token among the devices. Only the device that holds the token is allowed to transmit. The term token bus is not used much anymore, so I will not cover it in detail in this book. There are a few common failure modes in a bus topology. It is possible to have cable break in the middle, thereby isolating the two sides from each other. If one side holds the router that allows devices on the segment to get off, then the devices on the other side are effectively stranded. More serious problems can result if routers are on both sides of the break. The other problem that often develops in bus architectures is loss of one of the bus termination devices. In the case of 10Base2, this termination was a small electrical resister that cancelled echoes from the open end of the wire. If this terminator was damaged or removed, then every signal sent down the wire was met by a reflected signal. The result was noise and a seriously degraded performance. Both of these problems are avoided partially by using a central concentrator device such as a hub or a switch. In fact, new Ethernet segments are usually deployed by using such a device.3.1.1.2 Ring topology
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more