Money Geography Business Requirements
1.1.1 Money
So the first step in any network design is always to sit down and list the requirements. If one of the requirements is to save money by allowing people to do some task faster and more efficiently, then it is critical to understand how much money is saved. Money is one of the most important design constraints on any network. Money forms the upper limit to what can be accomplished, balancing against the as fast as possible requirement pushing up from below. How much money do they expect the network to save them? How much money do they expect it will make for them? If you spend more money building this network than its going to save or make for the organization, then it has failed to meet this critical business objective. Perhaps neither of these questions is directly relevant. But in that case, somebody is still paying the bill, so how much money are they willing to spend?1.1.2 Geography
Geography is the second major requirement to understand. Where are the users? Where are the services they want to access? How are the users organized geographically? By geography I mean physical location on whatever scale is relevant. This books primary focus is on Local Area Network LAN design, so I will generally assume that most of the users are in the same building or in connected building complexes. But if there are remote users, then this must be identified at the start as well. This could quite easily spawn a second project to build a Wide Area Network WAN, a remote-access solution, or perhaps a Metropolitan Area Network MAN. However, these sorts of designs are beyond the scope of this book. One of the keys to understanding the local area geography is establishing how the users are grouped. Do people in the same area all work with the same resources? Do they need access to the same servers? Are the users of some resources scattered throughout the building? The answers to these questions will help to define the Virtual LAN VLAN architecture. If everybody in each area is part of a self-contained work group, then the network could be built with only enough bandwidth between groups to support whatever small amounts of interaction they have. But, at the opposite extreme, there are organizations in which all communication is to a centralized group of resources with little or no communication within a user area. Of course, in most real organizations, there is most likely a mixture of these extremes with some common resources, some local resources, and some group-to-group traffic.1.1.3 Installed Base
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more