Guidelines for Implementing Redundancy
2.2.1 Guidelines for Implementing Redundancy
Clearly some careful thought is required to implement redundancy usefully. There are a number of general guidelines to help with this, but I will also discuss instances where it might be a good idea to ignore these guidelines. The first rule of thumb is to duplicate all Core equipment, but dont back up a backup. [1] Figure 2-1 and Figure 2-2 show a typical small part of a large LAN without and with redundancy, respectively. In Figure 2-2 the Core concentrator and the router have both been duplicated. There is even a second NIC installed in each of the servers. What has been accomplished in doing this? [1] As I will discuss later, there are actually cases where it is useful to back up a backup. If there are good reasons to expect multiple failures, or if the consequences of such a multiple failure would be catastrophic, it is worth considering. However, later in this chapter I show mathematically why it is rarely necessary. 17 Figure 2-1. A simple LAN without redundancy Figure 2-2. A simple LAN with Core redundancy 18 For the time being, I will leave this example completely generic. The LAN protocols are not specified. The most common example would involve some flavor of Ethernet. In this case the backup links between concentrators will all be in a hot standby mode using Spanning Tree. This is similar to saying that the second highway bridge is closed unless the first one fails. So there is no extra throughput between the concentrators on the user floors and the concentrators in the computer room. Similarly, the routers may or may not have load-sharing capability between the two paths. So it is quite likely that the network has gained no additional bandwidth through the Core. Later, I go into some specific examples that explore load sharing as well as redundancy, but in general there is no reason to expect that it will work this way. In fact, for all the additional complexity in this example, the only obvious improvement is that the Core concentrator has been eliminated as a single point of failure. This may be an important improvement. But it could also prove to be a lot of money for no noticeable benefit. And if the switchover from the primary to secondary Core concentrators is a slow or manual process, the network may see only a slight improvement in overall reliability. You would have to understand your expected failure modes before you could tell how useful this upgrade has been. This example looks like it should have been a good idea, but maybe it wasnt. Where did it go wrong? Well, the first mistake was in assuming that the problem could be solved simply by throwing gear at it. In truth, there are far too many subtleties to take a simple approach like this. One cant just look at physical connectivity. Most importantly, be very careful about jumping to conclusions. You must first clearly understand the problem you are trying to solve.2.2.2 Redundancy by Protocol Layer
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more