Layer 5 Layer 6 Layer 7 The Seven Layers
1.2.1.5 Layer 5
Layer 5 is not used in every protocol. It is where instructions for pacing and load balancing of different clients will occur, as well as where sessions are established. As I mentioned previously, the TCP protocol handles session establishment at Layer 4, and the UDP protocol doesnt really have sessions at all. To make matters more confusing, the TCPIP telnet and FTP protocols, for example, tend to handle the session maintenance as Layer 7 application data, without a separate Session Management layer. These protocols use Layer 4 to make the connection and then handle elements such as username and password verification as application information. Some protocols such as SNA can use a real Session Layer that operates independently from the Transport Layer. This ability to separate the layers, to run the same Session Layer protocol over a number of possible Transport Layers, or to build applications that have different options for session control, is what makes it a distinct layer.1.2.1.6 Layer 6
The Presentation Layer, Layer 6, is also not universally used. In some cases, a data stream between two devices may be encrypted, and this is commonly handled at Layer 6. But encryption can also be done in some systems at Layer 2, which is generally more secure and where it can be combined with data compression. One common usae of Layer 6 is in an FTP file transfer. It is possible to have the protocol interpret the data as either 7-bit or 8-bit characters. Similarly, some terminal-emulation systems use ASCII characters, while others use EBCDIC encoding for the data in the application payload of the packet. Again, this is a Layer 6 concept, but it might not be implemented as a distinct part of the application protocol. In many cases, conversions like these are actually made by the application and then inserted directly into Layer 4 packets. That is to say, a lot of what people tend to think of as Layer 6 concepts are not really distinct protocols. Rather, they are implementation options that are applied at Layers 4 and 7.1.2.1.7 Layer 7
And, finally, Layer 7 is called the Application Layer. This is where the contents of your email message or database query live. The Application Layer is really the point of having a network in the first place. The network needs to get information efficiently from one place to another. The Application Layer contains that information. Maybe it needs to be chopped up into several packets, maybe it needs to be translated into some sort of special encoding scheme, encrypted and forwarded through 17 different types of boxes before it reaches the destination. But ultimately the information gets there. This information belongs to Layer 7. 101.2.2 Where the OSI Model Breaks Down
Parts
» Money Geography Business Requirements
» Installed Base Bandwidth Business Requirements
» Layer 1 Layer 2 The Seven Layers
» Layer 3 Layer 4 The Seven Layers
» Layer 5 Layer 6 Layer 7 The Seven Layers
» Routing Versus Bridging Networking Objectives
» Top-Down Design Philosophy Networking Objectives
» Failure Is a Reliability Issue
» Performance Is a Reliability Issue
» Guidelines for Implementing Redundancy
» Redundancy by Protocol Layer
» Multiple Simultaneous Failures Complexity and Manageability
» Always let network equipment perform network functions Intrinsic versus external automation
» Examples of automated fault recovery
» Fault tolerance through load balancing
» Avoid manual fault-recovery systems
» Isolating Single Points of Failure
» Multiple simultaneous failures Predicting Your Most Common Failures
» Combining MTBF values Predicting Your Most Common Failures
» Traffic Anomalies Failure Modes
» Software Problems Human Error
» Ring topology Basic Concepts
» Star topology Basic Concepts
» Mesh Topology Basic Concepts
» Spanning Tree eliminates loops Spanning Tree activates backup links and devices
» Protocol-Based VLAN Systems VLANs
» Why collapse a backbone? Backbone capacity
» Backbone redundancy Collapsed Backbone
» Trunk capacity Distributed Backbone
» Trunk fault tolerance Distributed Backbone
» Ancient history Switching Versus Routing
» One-armed routers and Layer 3 switches
» Filtering for security Filtering
» Filtering for application control
» Containing broadcasts Switching and Bridging Strategies
» Redundancy in bridged networks Filtering
» Trunk design VLAN-Based Topologies
» VLAN Distribution Areas VLAN-Based Topologies
» Sizing VLAN Distribution Areas
» Multiple Connections Implementing Reliability
» Routers in the Distribution Level Routers in Both the Core and Distribution Levels
» Connecting Remote Sites Large-Scale LAN Topologies
» General Comments on Large-Scale Topology
» Cost Efficiency Selecting Appropriate LAN Technology
» Installed Base Maintainability Selecting Appropriate LAN Technology
» Ethernet addresses Ethernet Framing Standards
» Collision Detection Ethernet and Fast Ethernet
» Transceivers Ethernet and Fast Ethernet
» FDDI Local Area Network Technologies
» Wireless Local Area Network Technologies
» Firewalls and Gateways Local Area Network Technologies
» Horizontal Cabling Structured Cabling
» Vertical Cabling Structured Cabling
» Network Address Translation IP
» Multiple Subnet Broadcast IP
» Unregistered Addresses General IP Design Strategies
» Easily summarized ranges of addresses
» Sufficient capacity in each range
» Standard subnet masks for common uses
» The Default Gateway Question
» Types of Dynamic Routing Protocols
» Split Horizons in RIP Variable Subnet Masks
» Basic Functionality IGRP and EIGRP
» Active and Stuck-in-Active Routes
» Interconnecting Autonomous Systems IGRP and EIGRP
» Interconnecting Autonomous Systems OSPF
» Redistributing with Other Routing Protocols
» IP Addressing Schemes for OSPF OSPF Costs
» Autonomous System Numbers BGP
» IPX Addressing Schemes General IPX Design Strategies
» RIP and SAP Accumulation Zones
» Using Equipment Features Effectively
» Hop Counts Elements of Efficiency
» Bottlenecks and Congestion Elements of Efficiency
» Filtering Elements of Efficiency
» QoS Basics Quality of Service and Traffic Shaping
» Layer 2 and Layer 3 QoS Buffering and Queuing
» Assured Forwarding in Differentiated Services
» Traffic Shaping Quality of Service and Traffic Shaping
» Defining Traffic Types Quality of Service and Traffic Shaping
» RSVP Quality of Service and Traffic Shaping
» Network-Design Considerations Quality of Service and Traffic Shaping
» Configuration Management Network-Management Components
» Fault Management Performance Management Security Management
» Designing a Manageable Network
» VLAN structures Architectural Problems
» LAN extension Architectural Problems
» Redundancy features Architectural Problems
» Out-of-Band Management Techniques Management Problems
» Multicast Addressing IP Multicast Networks
» Multicast Services IP Multicast Networks
» Group Membership IP Multicast Networks
» Multicast administrative zones Network-Design Considerations for Multicast Networks
» Multicast and QoS Network-Design Considerations for Multicast Networks
Show more