The Impact of Oceanographic Parameters and Rainfall Variability to The Catch of Yellowfin Tuna in PPN Palabuhanratu Sukabumi West Java

(1)

DAMPAK VARIABILITAS PARAMETER OSEANOGRAFI (SST,

KLOROFIL-A DAN TPL) DAN CURAH HUJAN TERHADAP HASIL

TANGKAPAN

YELLOWFIN TUNA

DI PPN PALABUHANRATU,

SUKABUMI JAWA BARAT

EKA HARYANTI

PROGRAM STUDI TEKNOLOGI DAN MANAJEMEN PERIKANAN TANGKAP DEPARTEMEN PEMANFAATAN SUMBERDAYA PERIKANAN

FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR


(2)

i

PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI

Dengan ini saya menyatakan bahwa skripsi Dampak Variabilitas Parameter Osenografi (SST, Klorofil-a dan TPL) dan Curah Hujan terhadap Hasil Tangkapan YellowfinTuna di PPN Palabuhanratu Sukabumi Jawa Barat adalah karya saya sendiri dengan arahan dosen pembimbing dan belum diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya ilmiah yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam daftar pustaka di bagian akhir skripsi ini.

Bogor, 12 Oktober 2012 Eka Haryanti


(3)

ABSTRAK

EKA HARYANTI, C44080033. Dampak Variabilitas Parameter Oseanografi (SST, Klorofil-a dan TPL) dan Curah Hujan terhadap Hasil Tangkapan Yellowfin Tuna di PPN Palabuhanratu Sukabumi Jawa Barat. Dibimbing oleh PRIHATIN IKA WAHYUNINGRUM dan BUDY WIRYAWAN.

Yellowfin Tuna merupakan salah satu spesies tuna yang didaratkan di PPN Palabuhanratu. Produksi hasil tangkapan ikan ini mengalami penurunan selama 15 tahun terakhir. Penurunan produksi dapat diakibatkan dua hal yaitu penangkapan yang berlebihan atau dampak dari terjadinya variabilitas parameter oseanografi (SST, Klorofil-a dan TPL) dan curah hujan yang mempengaruhi habitat Yellowfin Tuna. Parameter oseanografi dan curah hujan merupakan beberapa indicator dari penyebaran dan hasil tangkapan ikan tuna karena berkaitan langsung dengan suhu. Oleh karena itu, penyebab terjadinya penurunan ini perlu untuk diketahui. Penelitian ini bertujuan untuk menganalisis berat dan panjang

Yellowfin, menganalisis variabilitas parameter oseanografi dan curah hujan, dan mencari hubungan parameter oseanografi dan curah hujan dengan jumlah produksi hasil tangkapan. Berdasarkan pengamatan komposisi ukuran, sebanyak 215 ekor (58,74%) ikan sudah layak tangkap berdasarkan panjang dan sebanyak 155 ekor (52,36%) berdasarkan berat. Pengamatan terhadap parameter oseanografi dan curah hujan dari tahun 1997 sampai 2011 menunjukkan peningkatan dan signifikan terhadap produksi hasil tangkapan dengan model regresi Y = 2.470.429 – 112.793 X1 + 937.609 X2 +

36.936 X3 + 236 X4 dan nilai R2 sebesar 69,6%.

Kata kunci: hasil tangkapan, komposisi ukuran, parameter oseanografi, PPN Palabuhanratu, YellowfinTuna.


(4)

iii

ABSTRACT

EKAHARYANTI, C44080033.The Impact of Oceanographic Parameters and Rainfall Variability to The Catch of Yellowfin Tuna in PPN Palabuhanratu Sukabumi West Java. Supervised by PRIHATIN IKA WAHYUNINGRUM and BUDY WIRYAWAN.

Yellowfin tuna is one of tuna species that is landed at PPN Palabuhanratu. Production of tuna has decreased over last 15 years. Production decline is caused two things that are overfishing or the impact occurrence of variability oceanographic parameters (SST, chlorophyll-a and SSH) and rainfall that affects habitats Yellowfin Tuna. Oceanographic parameters and rainfall are indicators for spreading and catching of tuna. It is because they directly related to temperature. Therefore, the cause of the decline needs to be understood. The research aims to analyze the weight and the length of Yellowfin; and to correlate with the catch, oceanographic parameters and rainfall. Based on the observation of size composition there were 215 individuals (58.74%) that suitable for fishing and 155 individuals (52.36%) by length and weight, respectively. The observation of oceanographic parameters and rainfall from 1997 to 2011 showed an improvement and significant to the production of catch by the regression model Y = 2,470,429 + -112,793 X1 + 937,609 X2 + 36,936 X3 + 236 X4 and R2=69.6%.

Keywords: catch, composition size, oceanographic parameters, PPN Pelabuhanratu, Yellowfin Tuna.


(5)

© Hak Cipta milik IPB, tahun 2012 Hak Cipta dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah; dan pengutipan tersebut tidak merugikan kepentingan yang wajar IPB.

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis dalam bentuk apapun tanpa seizin IPB.


(6)

v

DAMPAK VARIABILITAS PARAMETER OSEANOGRAFI (SST,

KLOROFIL-A, TPL) DAN CURAH HUJAN TERHADAP HASIL

TANGKAPAN

YELLOWFIN TUNA

DI PPN PALABUHANRATU,

SUKABUMI JAWA BARAT

EKA HARYANTI

Skripsi

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Perikanan pada

Departemen Pemanfaatan Sumberdaya Perikanan

PROGRAM STUDI TEKNOLOGI DAN MANAJEMEN PERIKANAN TANGKAP DEPARTEMEN PEMANFAATAN SUMBERDAYA PERIKANAN

FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR


(7)

Judul Penelitian : Dampak Variabilitas Parameter Oseanografi (SST, Klorofil-a dan TPL) dan Curah Hujan terhadap Hasil Tangkapan

Yellowfin Tuna di PPN Palabuhanratu, Sukabumi JawaBarat.

Nama : Eka Haryanti

NRP : C44080033

Program Studi : Teknologi dan Manajemen Perikanan Tangkap

Disetujui : Komisi Pembimbing

Ketua, Anggota,

Prihatin Ika Wahyuningrum, S.Pi, M.Si Dr. Ir. Budy Wiryawan, M.Sc NIP: 19780613 200801 2 011 NIP: 19621223 198703 1 001

Diketahui

Ketua Departemen Pemanfaatan Sumberdaya Perikanan

Dr. Ir. Budy Wiryawan, M.Sc NIP: 19621223 198703 1 001


(8)

vii

PRAKATA

Skripsi ditujukan untuk memenuhi syarat mendapatkan gelar sarjana pada Departemen Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor. Judul yang dipilih dalam penelitian yang dilaksanakan pada bulan Maret-Mei 2012 ini adalah “Dampak Variabilitas Parameter Oseanografi (SST, Klorofil-a dan TPL) dan Curah Hujan terhadap Hasil Tangkapan Yellowfin Tuna di PPN Palabuhanratu, Sukabumi Jawa Barat”.

Ucapan terimakasih penulis sampaikan kepada:

1. Prihatin Ika Wahyuningrum, S.Pi, M.Si dan Dr. Ir. Budy Wiryawan, M.Sc selaku Komisi Pembimbing atas arahan dan bimbingan yang telah diberikan;

2. Dr. Ir. Mohammad Imron, M.Si selaku Komisi Pendidikan Departemen Pemanfaatan Sumberdaya Perikanan dan Dr. Ir. Domu Simbolon, M.Si selaku pengujitamu;

3. Bu Imas Masriah, S.Pi Bagian Statistik PPN Palabuhanratu, Pak Karma Bagian Statistik PPN Palabuhanratu, Pak Asep dan Pak Nurdin selaku staff PPN Palabuhanratu.

4. Bapak, mamah dan adikku atas segala do’a, nasehat, usaha dan dukungan yang tidak pernah terputus;

5. Suamiku Maman Sulaeman atas do’a, bantuan, inspirasi dan semangatnya selama penyusunan penelitian ini;

6. Fasih dan Lela (teman-teman seperjuangan 101) atas dukungan, inspirasi dan semangatnya yang tak henti selama penyusunan penelitian ini;

7. Uni Siska dan The Isni yang telah membantu dalam memperbaiki penyusunan penelitian ini;

8. Mba Dewi, tim halqahku (Arini, Ainun, Tyasdan Tri) dan adik-adik BKIM atas do’a, semangat dan bantuannya;

9. Arrahmy Febrina, Nurtsani Liliana dan teman-teman PSP 45, adik-adik PSP 46 dan adik-adik PSP 47 atas segala do’a dan semangatnya kepada penulis;

10.Pihak yang tidak bisa disebutkan satu per satu.

Bogor, Oktober 2012 Eka Haryanti


(9)

RIWAYAT HIDUP

Penulis dilahirkan di Cilacap Jawa Tengah pada tanggal 28 Maret 1990 dari Bapak H Tono Haryadin dan Ibu Hj Rumsinah. Penulis merupakan putri pertama dari dua bersaudara.

Penulis lulus dari SMA PGRI 1 Bogor pada tahun 2008 dan pada tahun yang sama lulus seleksi masuk IPB melalui jalur Undangan Seleksi Masuk IPB. Penulis memilih Program Studi Teknologi dan Manajemen Perikanan Tangkap, Departemen Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor.

Selama mengikuti perkuliahan, penulis aktif dalam LDF Al Marjan sebagai tim syi’ar dan opini pada tahun kepengurusan 2009/2010, serta UKM BKIM sebagai tim humas pada tahun kepengurusan 2010/2011. Dalam rangka menyelesaikan tugas akhir, penulis melakukan penelitian dan menyusun skripsi dengan judul “Dampak Variabilitas Parameter Oseanografi (SST, Klorofil-a dan TPL) dan Curah Hujan terhadap Hasil Tangkapan YellowfinTunadi PPN Palabuhanratu, Sukabumi Jawa Barat”.


(10)

ix

DAFTAR ISI

Halaman

DAFTAR TABEL ………... xi

DAFTAR GAMBAR ……….. xii

DAFTAR LAMPIRAN ………... xiii

1 PENDAHULUAN 1.1 Latar Belakang ……….. 1

1.2 Perumusan Masalah ……….. 2

1.3 Tujuan ………... 3

1.4 Manfaat ………... 3

2 TINJAUAN PUSTAKA 2.1 Yellowfin Tuna……… 4

2.2 Parameter Oseanografi ………. 7

2.2.1 Suhu Permukaan Laut ………. 7

2.2.2 Klorofil-a ………. 9

2.3 Metode Regresi Linier Berganda ………. 10

3 METODOLOGI 3.1 Waktu dan Tempat Penelitian ………... 12

3.2 Metode Pengumpulan Data ………... 12

3.2.1 Data produksi hasil tangkapan ………. 12

3.2.2 Data komposisi ukuran ikan ………. 12

3.2.3 Data citra satelit dan curah hujan ………. 13

3.3 Metode Analisis Data ……… 13

3.3.1 Analisis produksi hasil tangkapan ………... 13

3.3.2 Analisis komposisi ukuran ikan ………... 13

3.3.3 Analisis SPL, Klorofil-a, TPL dan curah hujan ………... 14

3.4 Hubungan Parameter Oseanografi dan Curah Hujan dengan Hasil Tangkapan ……… 17


(11)

4 KONDISI UMUM DAERAH PENELITIAN

4.1 Letak/Posisi Geografis ……….. 18

4.2 Keadaan Iklim dan Musim ……… 18

4.3 Perikanan Tangkap ………... 19

4.3.1 Nelayan ……… 19

4.3.2 Alat tangkap ………. 20

4.3.3 Armada penangkapan ……….. 21

4.3.4 Daerah penangkapan ikan ……… 22

5 HASIL PENELITIAN 5.1 Jumlah Produksi Yellowfin Tuna ……….. 24

5.2 Komposisi Ukuran Yellowfin Tuna yang Tertangkap ……….. 25

5.3 Parameter Oseanografi ………. 28

5.3.1 Klorofil-a ……….. 28

5.3.2 Suhu permukaan laut ……… 31

5.3.3 Tinggi paras laut ……….. 34

5.4 Curah Hujan ……….. 35

5.5 Hubungan Variabilitas Parameter Oseanografi dan Curah Hujan dengan Hasil Tangkapan ……….. 36 5.6 Hubungan Parameter Oseanografi dan Curah Hujan dengan Hasil Tangkapan Yellowfin Tuna ……… 37

6 PEMBAHASAN 6.1 Produksi Hasil Tangkapan Yellowfin Tuna ………... 38

6.2 Komposisi Ukuran Yellowfin Tuna ………... 39

6.3 Parameter Oseanografi dan Curah Hujan ……….. 41

6.4 Hubungan Parameter Oseanografi dan Curah Hujan dengan Hasil Tangkapan Yellowfin Tuna……….. 42

7 KESIMPULAN DAN SARAN 7.1 Kesimpulan ………... 44

7.2 Saran ………. 44

DAFTAR PUSTAKA ………... 45


(12)

xi

DAFTAR TABEL

Halaman 1 Kisaran suhu dan lapisan renang ikan tuna ………... 6 2 Perkembangan jumlah nelayan yang beraktivitas di PPN Palabuhanratu tahun

1996-2010 ……….. 20

3 Perkembangan jumlah alat penangkap ikan yang beroperasi di PPN

Palabuhanratu tahun 1996-2010 ………... 21 4 Perkembangan jumlah kapal penangkap ikan yang beroperasi di PPN

Palabuhanratu tahun 1996-2010 ………... 22 5 Jumlah produksi hasil tangkapan tuna di PPN Palabuhanratu tahun 1997-2011

……… 24

6 Ukuran panjang dan berat Yellowfin Tuna layak tangkap ………. 26 7 Nilai normalitas, VIF dan koefisien keragaman antara parameter oseanografi

dan curah hujan dengan hasil tangkapan………... 36 8 Uji statistik parameter oseanografi dan curah hujan dengan hasil tangkapan


(13)

DAFTAR GAMBAR

Halaman

1 Yellowfin Tuna (Thunnus albacores) ………... 4

2 Sebaran vertikal suhu ………... 8

3 Peta lokasi penelitian……….. 12

4 Pengukuran panjang total ikan ………... 14

5 Diagram alir pengolahan data suhu permukaan laut dan klorofil ……... 16

6 Daerah penangkapan pancing tonda ………... 23

7 Hasil tangkapan Yellowfin Tunayang didaratkan ………. 25

8 Ukuran Yellowfin Tuna yang tertangkap ………... 27

9 Pengukuran panjang Yellowfin Tuna………. 27

10 Pengukuran berat Yellowfin Tuna……….. 28

11 Fluktuasi konsentrasi klorofil-a ………. 29

12 Konsentrasi klorofil-a tahun 1997-2011 ……… 31

13 Suhu permukaan laut ………. 32

14 Suhu permukaan laut tahun 1997-2011 ………. 33

15 Perubahan tinggi paras laut ……… 35


(14)

xiii

DAFTAR LAMPIRAN

Halaman

1 Pengoperasian pancing tonda………... 50

2 Kisaran panjang tubuh Yellowfin Tunayang tertangkap …………... 51

3 Kisaran berat tubuh Yellowfin Tunayang tertangkap ………. 52

4 Rata-rata bulanan suhu permukaan laut ………... 53

5 Rata-rata bulanan klorofil-a ……… 54

6 Rata-rata bulanan tinggi paras laut ………... 55

7 Rata-rata bulanan curah hujan Kabupaten Sukabumi ………. 56

8 Klorofil-a di Perairan Palabuhanratu ………... 57

9 Suhu permukaan laut di Perairan Palabuhanratu ……… 58

10 Dokumentasi penelitian ……….. 59


(15)

1 PENDAHULUAN

1.1 Latar Belakang

Parameter oseanografi merupakan beberapa indikator yang digunakan untuk mengetahui penyebaran jenis ikan. Ikan akan menyukai perairan yang memiliki beberapa parameter oseanografi antara lain suhu permukaan laut dan klorofil-a, yang sesuai dengan habitat ikan. Selain itu, curah hujan memiliki pengaruh terhadap suatu hasil tangkapan, karena terkait dengan kondisi cuaca ketika nelayan akan melakukan penangkapan. Permasalahan Climate change atau Climate variability yang sekarang terjadi merupakan permasalahan lingkungan yang berdampak pada keadaan alam sehingga mengakibatkan terjadinya perubahan suhu. Akhirnya, perubahan suhu ini mengakibatkan perubahan pada parameter oseanografi dan curah hujan, karena parameter oseanografi dan curah hujan berhubungan langsung dengan suhu.

Menurut FAO (2011), Indonesia adalah negara yang memiliki produksi perikanan 10 besar dunia setelah China, Jepang, India, negara-negara Eropa, Amerika dan Philipina. Produksi perikanan Indonesia mengalami kenaikan pada tahun 2011 sebesar 10,84%. Jumlah tersebut berasal dari kegiatan penangkapan dan budidaya perikanan. Produksi perikanan budidaya laut dan tawar memberikan kontribusi sebesar 56,33% atau 6,9 juta ton dari total produksi perikanan nasional, sedangkan untuk perikanan tangkap menghasilkan sebesar 5,4 juta ton atau 43,67% (KKP 2012). Menurut KKP (2011), Indonesia mengekspor produk perikanan berbagai jenis ke benua Amerika dan Uni Eropa. Jenis produk yang diekspor terdiri dari tuna, udang dan kepiting.

Perikanan tuna merupakan salah satu komoditas yang berkembang di Indonesia ataupun di dunia. Nilai ekspor tuna pada tahun 2008 menempati urutan kedua setelah udang. Total produksi tuna untuk ekspor secara nasional sampai Oktober 2008 mencapai 130.056 ton dengan nilai sebesar 347,189 juta dollar AS (Indrajana 2009).

Perairan Palabuhanratu yang terletak di selatan Jawa Barat merupakan salah satu daerah perikanan yang potensial di Indonesia. Salah satunya adalah perikanan tuna. Berdasarkan statistik perikanan PPN Palabuhanratu, terdapat tiga jenis tuna yang di daratkan di Palabuhanratu, yaitu Yellowfin Tuna, Bigeye Tuna dan Albacore. Yellowfin Tuna merupakan salah satu jenis tuna yang sering didaratkan setiap harinya di PPN Palabuhanratu. Hal tersebut karena operasi penangkapan ikan Yellowfin menggunakan


(16)

2 tonda. Alat tangkap tonda memiliki waktu operasi lebih cepat dibandingkan alat tangkap

long line yang waktu operasinya hingga berbulan-bulan dan mayoritas hasil tangkapannya adalah Bigeye Tuna.

1.2 Perumusan Masalah

Suhu merupakan salah satu faktor lingkungan yang dapat mempengaruhi penyebaran ikan tuna. Menurut Baskoro dan Taurusman (2011), masing-masing jenis tuna umumnya menghendaki keadaan lingkungan yang sesuai bagi dirinya. Suhu berkaitan langsung dengan parameter oseanografi dan curah hujan, sehingga ketika suhu mengalami perubahan maka akan menyebabkan perubahan pada parameter oseanografi dan curah hujan. Menurut Laevastu (1993), perubahan suhu dapat menjadi indikasi perubahan sistem angin, upwelling dan arus, sehingga menyebabkan perubahan ekosistem ikan. Terjadinya perubahan ekosistem ikan akan berpengaruh pada jumlah hasil tangkapan yang didaratkan.

Ikan tuna merupakan salah satu jenis ikan yang memiliki nilai jual yang tinggi dan memiliki kandungan zat gizi yang tinggi sehingga banyak dicari. Semakin banyaknya permintaan pasar terkait dengan tuna maka akan menyebabkan semakin tinggi pula penangkapan ikan tuna. Meningkatnya penangkapan ikan tuna akan berpengaruh terhadap kelestarian ikan tuna. Penelitian sebelumnya yang dilakukan oleh Ma’arif (2011) menunjukkan bahwa terdapat 68% ikan tidak layak tangkap terdapat di PPN Tamperan daerah Pacitan. Semakin banyaknya ikan tidak layak tangkap yang ditangkap oleh nelayan merupakan indikasi bahwa SDI tuna di perairan semakin berkurang.

Berdasarkan kedua fenomena tersebut maka perlu dilakukan pengkajian terkait terjadinya penurunan produksi ikan tuna. Apakah penurunan produksi tuna dipengaruhi oleh variabilitas parameter oseanografi dan curah hujan yang berkaitan dengan kelimpahan atau fluktuasi ikan, atau karena sumberdaya ikan tuna yang memang sudah menurun.


(17)

1.3 Tujuan

Tujuan dari penelitian ini adalah:

1. Menganalisis komposisi berat dan panjang Yellowfin Tuna untuk melihat hubungannya dengan layak dan tidak layak hasil tangkapan Yellowfin Tuna.

2. Menganalisis variabilitas parameter oseanografi (SST, klorofil dan tinggi paras laut) dan curah hujan.

3. Mencari hubungan parameter oseanografi (SST, klorofil dan tinggi paras laut) dan curah hujan dengan jumlah produksi hasil tangkapan.

1.4Manfaat

Manfaat dari penelitian ini adalah:

1) Memberikan informasi penyebab menurunnya produksi YellowfinTuna.

2) Memberikan informasi baru terkait keadaan laut sekarang dengan adanya climate variability, dan pengaruhnya terhadap hasil tangkapan Yellowfin Tuna.


(18)

4

2 TINJAUAN PUSTAKA

2.1 YellowfinTuna

Menurut Saanin (1984) ikan Yellowfin Tuna dapat diklasifikasikan sebagai berikut:

Kingdom : Animalia

Sub Kingdom : Metazoa

Phylum : Chordata

Sub Phylum : Vertebrata

Kelas : Pisces

Sub Kelas : Teleostei

Ordo : Percomorphi

Sub Ordo : Scombroidea

Famili : Scomberidae

Genus : Thunnus

Species : Thunnus albacores

Gambar 1 Yellowfin Tuna (Thunnus albacores).

Yellowfin Tuna memiliki rangka terdiri dari tulang benar, tertutup insang, kepala simetris dan badan tidak seperti ular. Badan bersisik, kadang-kadang seluruhnya atau sebagian tertutup oleh kelopak-kelopak tebal. Memiliki lebih dari 2 jari-jari sirip punggung keras dan hanya satu sirip punggung atau dua sirip punggung yang bersambungan atau berdekatan. Sirip punggung terdiri dari bagian yang berjari-jari keras dan langsung berhubungan dengan bagian yang berjari-jari lemah. Badan berbentuk cerutu, bersisik lingkaran (cycloid) dan jari-jari lemah sirip ekor bercabang pada


(19)

pangkalnya, terdapat sirip kecil di belakang sirip punggung dan sirip dubur. Sisik pada daerah sirip dada seolah-olah membentuk lapisan sendiri, satu rigi pada tiap-tiap sisi ekor ada 6-9 buah sirip-sirip kecil. Badan bersisik rata dan sirip dada sepanjang kepala (Saanin 1984). Yellowfin tuna memiliki warna biru gelap metalik hitam lalu disambung dengan warna kuning dan perak pada perut, untuk sirip dorsal, sirip dubur dan finlets berwarna kuning cerah. Berat maksimum YellowfinTuna adalah 200 kg dengan panjang baku maksimum 239 cm, tetapi umumnya tertangkap adalah 150 cm (Fishbase 2010).

Yellowfin Tuna yang di Indonesia dikenal dengan nama Madidihang atau Geulang Kedawung. Penyebaran ikan ini hampir di semua perairan tropis, terutama di Laut Cina Selatan, Laut Sulu, perairan Sulawesi dan Lautan Indonesia. Yellowfin Tuna banyak tertangkap sepanjang pantai yang berperairan panas tetapi dengan salinitas yang lebih rendah dari arus Kurosio. Ikan ini banyak menyukai area dekat pulau-pulau dan gosong karang, sehingga ikan ini dikenal sebagai ikan yang euryhaline atau mempunyai kemampuan beradaptasi yang tinggi dengan salinitas. YellowfinTuna dikatakan sebagai pemburu mangsa di siang hari, walau pada malam hari juga aktif memburu mangsa. Hasil analisa isi perut menunjukkan presentase pada siang hari lebih tinggi sehingga dikatakan lebih tepat sebagai pemburu siang hari (Gunarso 1985).

Suhu merupakan faktor penting untuk meramalkan adanya tuna di suatu perairan, walaupun belum dapat dijadikan dasar untuk menentukan kelimpahannya (Nakamura 1969). Yellowfin Tuna mempunyai kisaran temperatur antara 18oC–31oC. Kisaran 20oC– 28oC merupakan kisaran optimum dimana Yellowfin Tuna terkonsentrasi (Laevastu dan Hela 1970).

Kisaran suhu untuk penyebaran dan lapisan renang beberapa jenis tuna disajikan dalam tabel 1.


(20)

6 Tabel 1 Kisaran suhu dan lapisan renang ikan tuna

Jenis Ikan Suhu Optimum (oC) Lapisan Renang (m)

Bluefin tuna 14 – 21 50 – 300

Shouthern bluefin 10 – 28 50 – 300

Bigeye tuna 17 – 23 50 – 400

Yellowfin tuna 20 – 28 0 – 200

Albacore tuna 14 – 22 200 – 300

Striped marlin 18 – 24 0 – 80

Swordfish marlin 19 – 22 30 – 80

Black marlin 26 – 29 20 – 90

Skipjack tuna 20 – 24 0 – 40

Sumber: Batubara (1981)

Yellowfin Tuna termasuk ikan penjelajah perairan oseanis, dan biasanya ditemukan bergerombol. Ikan ini ditemukan hampir di seluruh laut yang hangat kecuali Laut Mediterania. Penyebaran geografisnya mencakup daerah yang sangat luas di seluruh daerah tropis dan subtropis Samudera Hindia, Pasifik dan Atlantik (Simbolon 2011).

Pusat distribusi Yellowfin Tuna berada di bagian utara dari arus khatulistiwa selatan di Pasifik tengah dan barat. Distribusi Yellowfin Tuna di bagian timur Pasifik tropis sangat bervariasi sesuai dengan perubahan musiman struktur laut. Pemijahan terjadi sepanjang tahundi perairan ini, walaupun puncak musim berbeda regional (Nakamura 1969).

Yellowfin Tuna menyebar di seluruh perairan Indonesia seperti di kawasan barat Indonesia dan kawasan timur Indonesia. Kawasan barat Indonesia meliputi Samudera Hindia, sepanjang pantai utara dan timur Aceh, pantai barat Sumatera, selatan Jawa, Bali dan Nusa Tenggara. Kawasan timur Indonesia meliputi Laut Banda, Flores, Halmahera, Maluku, Sulawesi, perairan Pasifik di sebelah utara Papua dan Selat Makassar (Uktolseja

et al 1998 diacu dalam Simbolon 2011).

Semua jenis tuna umumnya membentuk kelompok campuran dari dua atau tiga jenis tuna. Kelompok campuran tersebut terdiri dari spesies-spesies yang berukuran yang sama. Hal tersebut berkaitan erat dengan faktor kecepatan renang ikan. Semakin besar ukuran tuna, maka kecepatan renangnya semakin tinggi. Kesamaan dalam ukuran memiliki kecenderungan kecepatan renang tuna seragam (Baskoro dan Taurusman 2011).


(21)

2.2Parameter Oseanografi 2.2.1 Suhu permukaan laut

Suhu adalah salah satu faktor lingkungan yang paling mudah untuk diteliti dan ditentukan. Fluktuasi air laut banyak dipengaruhi oleh iklim, suhu udara, kekuatan arus, kecepatan angin, lintang, maupun keadaan relief dasar laut. Fluktuasi harian suhu permukaan misalnya, pada umumnya tidak akan lebih dari 0,2–0,4oC, sedangkan didekat pantai fluktuasi tersebut bisa mencapai beberapa derajat celcius besarnya (Baskoro dan Taurusman 2011).

Suhu dipengaruhi oleh musim, lintang, ketinggian dpl (dari permukaan laut), waktu harian, sirkulasi udara, awan, aliran dan kedalaman air. Umumnya suhu digunakan sebagai indikator untuk menentukan perubahan ekologi. Hal itu tidak saja menyangkut suhu dan daerah fluktuasinya, akan tetapi juga menyangkut gradient horizontal dan vertikalnya, variasi dari satu tempat ke tempat lain dimana suhu tersebut dipakai sebagai indikator ekologi baik secara langsung maupun tidak langsung (Baskoro dan Taurusman 2011).

Suhu adalah ukuran energi gerakan molekul. Di samudra, suhu bervariasi secara horizontal sesuai dengan garis lintang, dan juga secara vertikal sesuai dengan kedalaman. Suhu merupakan salah satu faktor yang sangat penting dalam mengatur proses kehidupan dan penyebaran organisme. Kebanyakan organisme laut telah mengalami adaptasi untuk hidup dan berkembang biak dalam kisaran suhu yang lebih sempit daripada kisaran total 0–40oC. Sebagian besar organisme laut juga bersifat poikilotermik (berdarah dingin) dan suhu air laut bervariasi menurut garis lintang, maka penyebaran organisme laut sangat mengikuti perbedaan suhu lautan secara geografik (Nybakken 1988).

Sebaran suhu secara vertikal di perairan Indonesia pada dasarnya dapat dibedakan menjadi tiga lapisan yakni, lapisan hangat di bagian teratas, lapisan termoklin di tengah dan lapisan dingin dibagian bawah. Secara alami suhu air permukaan memang merupakan lapisan hangat karena mendapat radiasi matahari pada siang hari. Lapisan teratas sampai kedalaman kira-kira 50-70 m terjadi pengadukan karena adanya kerja angin, sehingga di lapisan tersebut terdapat suhu hangat (sekitar 28oC) yang homogen. Lapisan teratas ini sering pula disebut lapisan homogen dan bisa menjadi tebal lagi karena adanya pengaruh arus dan pasang-surut. Di perairan dangkal lapisan homogen ini melanjut sampai ke dasar (Nontji 2005).


(22)

8 Lapisan termoklin terdapat di bawah lapisan homogen, di mana suhu menurun cepat terhadap kedalaman. Suhu yang turun menyebabkan densitas air meningkat, maka lapisan termoklin ini merupakan pula daerah perlonjakan kenaikan densitas yang sangat menyolok. Perubahan densitas ini bisa lebih diperkuat lagi karena di lapisan ini pun salinitas sering meningkat dengan cepat. Akibatnya air di sebelah atasnya tidak bisa bercampur dengan lapisan air di bawahnya, sehingga lapisan ini sering pula disebut lapisan pegat (discontinuity layer) karena mencegah atau memegat percampuran air antara lapisan di atas dan di bawahnya. Upwelling terjadi karena lapisan pegat ini bergerak ke atas dan bentuknya tidak lagi terlalu tajam hingga zat hara yang kaya dari lapisan dalam bisa naik ke atas. Tebalnya lapisan termoklin bervariasi sekitar 100-200 m. Di bawah lapisan termoklin, baru terdapat lagi lapisan yang hampir homogen dan dingin. Makin ke bawah suhunya berangsur-angsur turun hingga pada kedalaman lebih 1.000 m suhu biasanya kurang dari 5oC (Nontji 2005). Pola sebaran suhu secara vertikal diperlihatkan dalam Gambar 2.


(23)

2.2.2 Klorofil-a

Plankton adalah biota yang hidup di lingkungan pelagik dan mengapung, menghanyut atau berenang sangat lemah, artinya mereka tak dapat melawan arus. Plankton terdiri dari fitoplankton atau plankton tumbuh-tumbuhan dan zooplankton atau plankton hewan. Biota yang mengapung ini mencakup sejumlah besar biota di laut, baik ditinjau dari jumlah jenisnya maupun kepadatannya. Produsen primer (fitoplankton), herbivora, konsumen tingkat pertama, larva dan juwana planktonik dari hewan lain, digabung menjadi satu membentuk volume biota laut yang luar biasa besarnya (Romimohtarto dan Juwana 2001).

Meskipun fitoplankton membentuk sejumlah besar biomassa di laut, kelompok ini hanya diwakili oleh beberapa filum saja. Sebagian bersel satu dan mikroskopik, dan mereka termasuk filum Chrysophyta, yakni alga kuning-hijau yang meliputi diatom dan kokolitofor (coccolithophore). Selain ini terdapat beberapa jenis alga biru-hijau (Cyanophyta), alga coklat (Phaeophyta) dan satu kelompok besar dari Dinoflagellata (Pyrophyta) (Romimohtarto dan Juwana 2001).

Menurut Nontji (2005), fitoplankton sebagai tumbuhan yang mengandung pigmen klorofil mampu melaksanakan reaksi fotosintesis di mana air dan karbon dioksida dengan adanya sinar surya dan garam-garam hara dapat menghasilkan senyawa organik seperti karbohidrat. Karena kemampuan membentuk zat organik dari zat anorganik maka fitoplankton disebut sebagai produsen primer (primary producer). Proses fotosintesis tersebut dapat disingkat sebagai reaksi berikut ini:

Karbondioksida + air Glukosa + oksigen 6 CO2 + 6 H2O C6H12O6 + 6 O2

Dalam rantai makanan (food chain), fitoplankton akan dimakan oleh hewan herbivor yang merupakan produsen sekunder (secondary producer). Produsen sekunder ini umumnya berupa zooplankton yang kemudian dimangsa pula oleh hewan karnivor yang lebih besar sebagai produsen tersier (tertiary producer). Demikianlah seterusnya rentetan karnivor memangsa karnivor lain hingga merupakan produsen tingkat keempat, kelima dan seterusnya (Nontji 2005).

Menurut Romimohtarto dan Juwana (2001), produktivitas primer dipengaruhi oleh beberapa faktor, yaitu sinar matahari (cahaya) dan cuaca melalui tutupan awan, angin dan secara tidak langsung melalui suhu. Angin dapat mengurangi penembusan


(24)

10 cahaya ke permukaan laut dan mengurangi kecepatan proses produktivitas primer. Angin dapat menciptakan gelombang yang mengakibatkan permukaan laut tidak rata dan memantulkan sebagian besar sinar matahari jika dibandingkan dengan permukaan yang rata. Suhu juga mempengaruhi daya larut gas-gas yang diperlukan untuk fotosintesis seperti CO2 dan O2.Gas-gas ini mudah terlarut pada suhu rendah daripada suhu tinggi,

akibatnya kecepatan fotosintesis ditingkatkan oleh suhu rendah.

Fitoplankton yang subur umumnya terdapat di perairan sekitar muara sungai atau di perairan lepas pantai di mana terjadi air naik (upwelling). Di kedua lokasi itu terjadi proses penyuburan karena masuknya zat hara ke dalam lingkungan tersebut. Di depan muara sungai banyak zat hara datang dari daratan dan dialirkan oleh sungai ke laut, sedangkan di daerah air naik zat hara yang kaya terangkat dari lapisan lebih dalam kearah permukaan (Nontji 2005).

2.3Metode Regresi Linier Berganda

Regresi linier berganda digunakan untuk mengetahui pengaruh parameter oseanografi dan curah hujan terhadap hasil tangkapan. Hasil tangkapan merupakan variabel terikat sedangkan parameter oseanografi dan curah hujan adalah variabel bebas.Menurut Sarwono (2011) model regresi linier layak digunakan dengan memenuhi syarat sebagai berikut:

1) Angka signifikansi pada ANOVA sebesar < 0.05

2) Predictor yang digunakan sebagai variabel bebas harus layak. Kelayakan ini diketahui jika angka Standard Error of Estimate < Standard Deviation

3) Koefesien regresi harus signifikan. Pengujian dilakukan dengan Uji T. Koefesien regresi signifikan jika T hitung > T table (nilai kritis).

4) Tidak boleh terjadi multikolinieritas, artinya tidak boleh terjadi korelasi yang sangat tinggi atau sangat rendah antar variabel bebas. Syarat ini hanya berlaku untuk regresi linier berganda dengan variabel bebas lebih dari satu.

5) Tidak terjadi otokorelasi. Terjadi otokorelasi jika angka Durbin dan Watson (DB) sebesar < 1 dan > 3

6) Keselerasan model regresi dapat diterangkan dengan menggunakan nilai r2 semakin besar nilai tersebut maka model semakin baik. Jika nilai mendekati 1 maka model regresi semakin baik. Nilai r2mempunyai karakteristik diantaranya: 1) selalu positif, 2) Nilai r2maksimal sebesar 1. Jika Nilai r2sebesar 1 akan mempunyai arti kesesuaian


(25)

yang sempurna. Maksudnya seluruh variasi dalam variabel Y dapat diterangkan oleh model regresi. Sebaliknya jika r2 sama dengan 0, maka tidak ada hubungan linier antara X dan Y.

7) Terdapat hubungan linier antara variabel bebas (X) dan variabel tergantung (Y) 8) Data harus berdistribusi normal

9) Data berskala interval atau rasio

10) Kedua variabel bersifat dependen, artinya satu variabel merupakan variabel bebas (disebut juga sebagai variabel predictor) sedang variabel lainnya variabel tergantung (disebut juga sebagai variabel response).

Kelebihan dari metode regresi linier yaitu kemampuannya dalam memprediksi. Selain itu menurut Wibowo (2009) regresi liner memiliki beberapa kelemahan yaitu: 1. Tidak mampu menunjukkan titik jenuh fungsi yang sedang diselidiki. Akibatnya

selalu timbul kemungkinan kesalahan peramalan (ektraspolasi).

2. Terdapat kemungkinan terjadinya multikolineritas pada variabel-variabel yang dipakai. Akibatnya variabel bebas tidak mampu menjelaskan variabel tak bebas tidak mampu menjelaskan varaibel tak bebas (hubungan antara X dan Y tidak bermakna).


(26)

12

3 METODOLOGI

3.1 Waktu dan Tempat Penelitian

Penelitian dilakukan di PPN Palabuhanratu pada bulan Maret-Mei 2012. Pengolahan data dilakukan di Studio Komputer Departemen Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor.

Gambar 3 Peta Lokasi Penelitian

3.2 Metode Pengumpulan Data 3.2.1 Data produksi hasil tangkapan

Pengumpulan data jumlah hasil tangkapan Yellowfin Tuna diperoleh dari pihak PPN Palabuhanratu. Data hasil tangkapan yang digunakan adalah data hasil tangkapan mulai tahun 1997-2011.

3.2.2 Data komposisi ukuran ikan

Data ukuran panjang dan berat ikan diperoleh dengan pengukuran langsung dilapangan dengan jumlah sampel 10% dari populasi hasil tangkapan Yellowfin Tuna

yang didaratkan dari suatu kapal. Sampel kapal yang diambil adalah kapal tonda, yang berjumlah 50% (23 buah kapal) dari total kapal yang beroperasi pada saat penelitian.


(27)

Sampel ukuran panjang dan berat diambil secara acak tanpa disortir dari hasil tangkapan kapal tonda yang didaratkan.

3.2.3 Data citra satelit dan curah hujan

Pengumpulan data citra satelit yaitu parameter oseanografi yang terdiri dari suhu permukaan laut, klorofil dan tinggi paras laut. Data suhu permukaan laut dan klorofil diperoleh melalui website www.oceancolour.com dan PO.DAAC.jpl.nasa.gov, data tinggi paras laut dengan mendownload di PO.DAAC.jpl.nasa.gov. Data suhu permukaan laut dan klorofil yang digunakan adalah citra Aqua MODIS level 3 mulai tahun 1997-2011. Citra ini digunakan karena khusus untuk keperluan kelautan dan perikanan dan dapat dilihat dengan baik sehingga pengamatan dapat dilihat dengan jelas. Tinggi paras laut diambil data tahunannya mulai tahun 1997-2011.

Data curah hujan dikumpulkan dari BPS (Badan Pusat Statistik) Kabupaten Sukabumi dan perkiraan data tahun 2011 dari DISPARBUDPORA (Dinas Pariwisata, Budaya, Pemuda dan Olahraga) Kab Sukabumi rata-rata tahunan curah hujan. Curah hujan diambil data bulanan dalam lima belas tahun mulai dari tahun 1997–2011.

3.3Metode AnalisisData

3.3.1 Analisis produksi hasil tangkapan

Analisis ini bertujuan untuk mengetahui perubahan produksi hasil tangkapan selama 15 tahun (1997-2011). Analisis produksi hasil tangkapan dilakukan secara deskriptif dengan melihat data produksi hasil tangkapan Yellowfin Tuna.

3.3.2 Analisis komposisi ukuran ikan

Analisis komposisi ukuran Yellowfin Tuna bertujuan untuk mengetahui hasil tangkapan yang didaratkan sudah layak tangkap atau tidak, dengan melihat length at maturity dan weight at maturity Yellowfin Tuna. Analisis hasil tangkapan Yellowfin Tuna


(28)

14 1)Jumlah ikan

Sampel ikan yang diambil sebanyak 296 ekor dari kapal tonda (23 buah). Jumlah kapal tersebut merupakan jumlah kapal yang beroperasi pada saat penelitian.

2)Panjang ikan

Panjang total ikan diukur dari ujung mulut hingga ujung sirip ekor. Data panjang ikan digunakan untuk mengetahui jumlah ikan Yelllowfin Tuna yang layak untuk ditangkap.

Panjang total

Gambar 4 Pengukuran panjang total ikan 3)Berat ikan

Sampel Yellowfin Tuna diukur beratnya satu per satu dengan menggunakan timbangan. Data berat digunakan untuk mengetahui jumlah ikan yang layak untuk ditangkap.

3.3.3Analisis SPL, Klorofil-a, TPL dan Curah hujan

Data suhu permukaan laut dan klorofil didapat dengan mendownload di

www.oceancolour.com dan PO.DAAC.jpl.nasa.gov. Suhu permukaan laut dan klorofil diolah dengan menggunakan software Seadas 6.3. Citra suhu permukaan laut dan klorofil kemudian diolah untuk mendapat konsentrasi dengan keluaran berupa gambar dengan format PNG dan berupa data dengan format ASCII. Data dalam format ASCII tersebut kemudian diolah dalam Microsoft excel untuk dicari rata-ratanya perbulan dalam 15 tahun. Data suhu permukaan laut dan klorofil disajikan dalam bentuk grafik dan gambar untuk mengetahui perubahan yang terjadi dalam 15 tahun (1997-2011).

Berikut adalah langkah-langkah dalam pengolahan suhu permukaan laut dan klorofil:

1. Pengolahan data diawali terlebih dahulu dengan mendownload data klorofil di

www.oceancolour.com dan data suhu permukaan laut di www.oceancolour.com dan

PO.DAAC.jpl.nasa.gov. Download pada kedua situs tersebut memiliki langkah yang berbeda, untuk mendownload di www.oceancolour.com masuk situsnya dan memilih


(29)

bulanan (monthly). Download data dengan mengklik SMI pada sebelah kiri bawah gambar, maka secara otomatis data pun dapat didownload. Download data di

PO.DAAC.jpl.nasa.gov dapat dilakukan dengan masuk dalam situsnya terlebih dahulu, setelah itu klik Measurements dan pilih Sea Surface Tempeature (SST) dan klik

AVHRR-Pathfinder. Klik situs web

http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/, dan klik V5.0/5.1 User Guide pada kotak bagian bawah, lalu akan muncul halaman baru. Pilih situs web

ftp://ftp.nodc.noaa.gov/pub/data.nodc/pathfinder pada judul tulisan How to Access the

Data. Pilih Version5.0 lalu klik Monthly (karena data yang dibutuhkan adalah data bulanan), lalu pilih data pada tahun yang diinginkan maka salah satunya akan muncul

199701.s04m1pfv50-sst-16b.hdf kemudian dapat langsung diklik maka secara otomatis data dapat didownload.

2. Data yang telah didownloaddapat langsung diolah di Seadas 6.3. Data di Copy pada

Desktop kemudian diextract dalam program Seadas 6.3 karena data yang didownload

masih dalam bentuk mentahan.

3. Tahap selanjutnya klik Display pada Seadas Main Menu. Data akan berada di Desktop

maka klik Desktop, lalu pilih data bulanan yang akan diolah. Kemudian akan muncul

Product Selection For Modis File untuk tempat yang diinginkan dapat mencantumkan bujur dan lintang. Klik Chlorophyll a concentration untuk klorofil dan Sea Surface Temperature untuk suhu permukaan laut, lalu klik Load.

4. Band List Selection akan muncul dan klik Display. Muncul tab berikutnya dan klik

Function, pilih Output ASCII untuk menampilkan dalam bentuk data. Pilih Set up dan pada tab Output ASCII Setup klik Write File, maka secara otomatis data telah terproses.

5. Setelah itu, untuk mendapatkan dalam bentuk gambar dapat klik Function, pilih

Output Display, lalu klik go maka secara otomatis gambar pun tersimpan.

6. Data yang telah diolah di Seadas 6.3 kemudian diolah di Microsoft excel untuk dicari rata-rata per bulannya dalam 15 tahun terakhir (1997-2011).


(30)

16 Tahapan pengolahan data suhu permukaan laut dan klorofil secara umum disajikan dalam diagram alir berikut ini:

Tidak

Ya

Gambar 5 Diagram alir pengolahan data suhu permukaan laut dan klorofil

Data tinggi paras laut yang diperoleh dengan mendownload di

PO.DAAC.jpl.nasa.gov berupa data tahunan dalam periode 1997–2011, kemudian diolah di Microsoft excel. Data yang telah diolah disajikan dalam bentuk grafik untuk

Mulai

Download data

Suhu permukaan laut dan Klorofil-a

Bebas Awan

Menu utama Seadas 6.3 Croping dan function

Pengolahan data di Microsoft excel

Selesai

Output gambar

Output Display

Outputdata


(31)

mengetahui perubahan tinggi paras laut yang terjadi selama 15 tahun dari tahun 1997– 2011. Data bulanan curah hujan disajikan dalam bentuk grafik. Analisis dilakukan secara deskriptif dengan melihat pola perubahan grafik dalam 15 tahun terakhir.

3.4 Hubungan Parameter Oseanografi dan Curah Hujan dengan Hasil Tangkapan Variabel hasil tangkapan dengan variabel parameter oseanografi dan curah hujan dilakukan uji statistik. Tahapan uji statistik yang dilakukan yaitu uji normalitas, uji kolinearitas, koefisien keragaman (koefisien varians) dan analisis regresi linier berganda. Uji statistik parameter oseanografi dan curah hujan dengan hasil tangkapan menggunakan perangkat lunak Minitab 16, setelah itu dilakukan analisis deskriptif terhadap masing-masing tahapan.

Uji normalitas dilakukan untuk mengetahui apakah sampel dapat mewakili populasi, sedangkan uji kolinearitas untuk mengetahui ada tidaknya hubungan linier atau korelasi yang tinggi antara masing-masing variable independen (parameter oseanografi dan curah hujan). Koefisien keragaman (koefisien varians) perlu dilakukan untuk mengetahui variabilitas parameter oseanografi dan curah hujan dengan hasil tangkapan. Parameter oseanografi dan curah hujan yang memiliki tingkat keragaman besar maka memiliki nilai variabilitas yang besar pula.

Hubungan parameter oseanografi dan curah hujan dengan produksi hasil tangkapan dilakukan melalui analisis statistik regresi linier berganda. Untuk menentukan derajat hubungan antara variabel parameter oseanografi dan curah hujan dan variabel produksi hasil tangkapan dilakukan analisis korelasi dengan mengetahui keterikatannya. Hasil uji statistik disajikan dalam bentuk persamaan matematis, yaitu persamaan regresi linier berganda sebagai berikut:

Y = a+b1X1+b2X2+…+bnXn

Keterangan:

Y : Variabel terikat a : Konstanta b1,b2 : Koefisien regresi


(32)

18

4 KONDISI UMUM DAERAH PENELITIAN

4.1 Letak/Posisi Geografis

Berdasarkan letak geografis, posisi teluk Palabuhanratu berada pada 6o57’–7o07’ LS dan 106o22’–106o33’ BT. Perairan Palabuhanratu terletak di sebelah selatan Jawa Barat. Kecamatan Palabuhanratu termasuk dalam kabupaten Sukabumi dan berjarak sekitar 61 km dari kabupaten Sukabumi. Luas dari kecamatan Palabuhanratu adalah 27.210,13 ha atau sekitar 6,59% dari total luas wilayah kabupaten Sukabumi mencapai 412.799,54 ha. Kecamatan Palabuhanratu terbagi ke dalam 13 desa yaitu Citepus, Tanjong, Cikadu, Citarik, Pasisuren, Cidadap, Loji, Cibuntu, Mekarasih, Kertajaya, Cihaur, Buniwangi, Cibodas.

Kecamatan Palabuhanratu dibatasi oleh kecamatan Cikidang di sebelah utara, kecamatan Ciemas di sebelah selatan, kecamatan Warung Kiara di sebelah timur, Samudera Indonesia disebelah barat. Sekeliling Teluk Palabuhanratu merupakan daerah pegunungan yang diikuti oleh daratan pantai dan selanjutnya pantai terjal yang berkelanjutan di bawah laut.

4.2 Keadaan Iklim dan Musim

Terdapat dua musim utama di PPN Palabuhanratu yaitu musim barat dan musim timur, diantara kedua musim tersebut terdapat musim peralihan dari musim barat ke timur dan sebaliknya. Musim peralihan oleh penduduk setempat disebut dengan musim Liwung yang terjadi pada bulan Maret-Mei dan September-November. Perubahan musim ini terjadi karena adanya perubahan sistem tekanan di Asia dan Australia akibat posisi matahari terhadap lintang (Nontji 2005). Perbedaan musim tersebut sangat mempengaruhi operasi penangkapan ikan. Selama musim barat (Desember–Februari), ombak sangat besar disertai dengan angin dan hujan yang sangat kencang yang mengakibatkan para nelayan enggan untuk melaut. Sebaliknya, pada musim timur (Juni– Agustus), keadaan perairan biasanya tenang, jarang terjadi hujan dan ombak relatif kecil sehingga memungkinkan nelayan untuk melaut dan biasanya pada musim ini merupakan musim puncak ikan (Nurhayati 2006).


(33)

4.3 Perikanan Tangkap 4.3.1 Nelayan

Nelayan di Palabuhanratu dapat digolongkan menjadi nelayan pemilik dan nelayan buruh (ABK). Nelayan pemilik adalah orang yang memiliki armada penangkapan ikan atau disebut juga juragan. Juragan dapat dikelompokkan menjadi dua, yaitu:

1. Juragan laut adalah pemilik armada/perahu penangkapan yang ikut dalam operasi penangkapan.

2. Juragan perahu adalah pemilik armada atau perahu penangkapan tetapi tidak ikut dalam operasi penangkapan ikan.

Selain itu, berdasarkan asalnya nelayan Palabuhanratu dikategorikan sebagai nelayan asli yaitu penduduk setempat yang telah turun temurun berprofesi sebagai nelayan dan nelayan pendatang yaitu nelayan yang berasal dari sentra-sentra perikanan seperti dari: Cirebon, Cilacap, Indramayu dan Makassar yang kemudian menetap dan berdomisili di Palabuhanratu dan sekitarnya.

Berdasarkan waktunya nelayan di Palabuhanratu dapat dikelompokkan menjadi nelayan penuh dan sambilan. Nelayan penuh merupakan nelayan yang sehari-harinya berprofesi sebagai nelayan, sedangkan nelayan sambilan adalah nelayan yang hanya pada waktu-waktu tertentu saja melakukan pekerjaan menangkap ikan. Setiap alat tangkap dioperasikan oleh nelayan dalam jumlah yang berbeda.Setiap nelayan memiliki kemampuan untuk mengoperasikan alat tangkap tertentu.

Jumlah nelayan yang beraktivitas di Palabuhanratu dari tahun 1996-2010 mengalami kenaikkan dan juga penurunan. Pada tahun 1996-1998, 2001-2007 dan 2009-2010 nelayan yang beraktivitas di Palabuhanratu mengalami peningkatan, sedangkan penurunan jumlah nelayan terjadi pada tahun 1999-2000 dan 2008. Peningkatan jumlah nelayan tertinggi terjadi pada tahun 2007 yaitu sebesar 1.623 orang (37,13%), sedangkan penurunan tertingginya terjadi pada tahun 2008, yaitu sebesar 2.094 orang (34,93%). Penurunan drastis yang terjadi pada tahun 2008 disebabkan karena berkurangnya jumlah kapal ikan yang beroperasidi PPN Palabuhanratu. Data jumlah nelayan tersaji pada Tabel 2.


(34)

20 Tabel 2 Perkembangan jumlah nelayan yang beraktivitas di PPN Palabuhanratu tahun

1996-2010

Tahun Jumlah Nelayan Perubahan

(orang) (orang) (%)

1996 2.418 - -

1997 2.589 171 7,07

1998 2.694 105 4,06

1999 2.565 -129 -4,79

2000 2.354 -211 -8,23

2001 2.377 23 0,98

2002 2.519 142 5,97

2003 3.340 821 32,59

2004 3.439 99 2,96

2005 3.498 59 1,72

2006 4.371 873 24,96

2007 5.994 1.623 37,13

2008 3.900 -2.094 -34,93

2009 4.453 553 14,18

2010 4.474 21 0,47

Sumber: Statistik Perikanan PPN Palabuhanratu tahun 1996-2010

4.3.2 Alat tangkap

Kegiatan perikanan tangkap di Palabuhanratu didukung oleh berbagai jenis unit penangkapan ikan dengan jumlah yang cukup besar. Unit penangkapan ikan tersebut meliputi payang, pancing, bagan, gillnet, purse seine, tuna long line, rampus, trammel net, jaring klitik, pancing layur dan pancing tonda. Jenis dan jumlah alat penangkap ikan yang dioperasikan di Palabuhanratu dapat dilihat pada Tabel 3.


(35)

Tabel 3 Perkembangan jumlah alat penangkap ikan yang beroperasi di PPN Palabuhanratu tahun 1996-2010

Jenis Tahun

Alat

Tangkap 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

Rampus 34 30 14 0 0 33 0 11 118 26 46 101 35 110 16

P.Layur 0 0 0 0 0 0 0 0 17 74 25 0 0 0 0

Payang 70 85 98 64 64 64 64 84 89 101 166 159 45 121 10 Bagan 155 97 97 102 95 93 102 107 96 206 263 267 200 23 35 P.seine 3 5 5 0 0 0 1 3 8 7 2 9 3 8 3

Gillnet 125 81 92 141 179 172 135 151 147 40 94 135 50 38 6 P.Ulur 0 0 0 0 202 188 204 168 203 162 255 414 254 170 55 Trammel

Net 0 0 0 0 0 0 39 0 27 23 31 33 30 25 15 Tonda 75 56 65 103 15 9 12 6 5 18 20 29 40 65 80 Longline 0 0 0 0 0 0 0 17 36 71 34 155 110 33 27

J.Klitik 0 0 0 0 0 0 0 0 0 22 14 0 0 0 0

Sumber: Statistik Perikanan PPN Palabuhanratu tahun 1996-2010

Alat tangkap yang dominan digunakan oleh nelayan Palabuhanratu pada tahun 2010 adalah tonda sebesar 80 unit, lalu pancing ulur sebesar 55 unit dan bagan sebesar 35 unit. Selain itu, ada beberapa jenis alat tangkap yang mengalami penurunan jumlahnya pada tahun 2010, yaitu rampus sebesar 16 unit, payang sebesar 10 unit, purse seine

sebesar 3 unit, gillnet sebesar 6 unit, pancing ulur sebesar 55 unit, trammel net 15 unit dan longline 27 unit. Jenis alat tangkap yang jumlahnya meningkat pada tahun 2010 adalah bagan sebesar 35 unit dan tonda sebesar 80 buah.

4.3.3Armada penangkapan

Armada penangkap ikan yang digunakan di Palabuhanratu terbagi atas perahu motor tempel dan kapal motor. Perahu motor tempel merupakan perahu dengan posisi mesin diluar (outboard) sehingga mesin dapat dibongkar pasang, sedangkan kapal motor merupakan kapal dengan posisi mesin didalam (inboard). Perahu motor tempel (PMT) digunakan oleh usaha penangkapan ikan yang berskala kecil atau tradisional, sedangkan kapal motor digunakan oleh usaha penangkapan ikan yang berskala menengah keatas.

Jumlah armada penangkapan di Palabuhanratu mengalami kondisi maksimum pada tahun 2007 untuk jenis perahu motor tempel, dengan jumlah 531 unit. Sementara untuk jenis kapal motor mengalami kondisi maksimum pada tahun 2006 untuk kapal motor < 10 GT sebesar 153 unit dan kapal motor 21-30 GT sebesar 53 unit, tahun


(36)

1996-22 1997 untuk kapal motor 10-20 GT sebesar 30 unit dan tahun 2004 untuk kapal motor 31-200 GT sebesar 139 unit, dan dapat dilihat pada Tabel 4.

Berdasarkan Tabel 4 terlihat armada penangkapan ikan di Palabuhanratu jumlahnya mengalami penurunan pada tahun 2010 yaitu untuk jenis perahu motor tempel (PMT) sebesar 346 unit, kapal motor < 10 GT sebesar 178 unit, kapal motor 31-200 GT sebesar 91 unit. Sementara untuk armada penangkapan yang jumlahnya mengalami peningkatan adalah kapal motor 10-20 GT sebesar 8 unit dan kapal motor 21-30 GT sebesar 77 unit.

Tabel 4 Perkembangan jumlah kapal penangkap ikan yang beroperasi di PPN Palabuhanratu tahun 1996-2010

Tahun

Perahu

Jenis Kapal Jumlah

Motor

Tempel Kapal Motor (KM) Kapal

(PMT) < 10 GT 10-20 GT 21-30 GT 31-200

GT (unit)

1996 365 51 30 30 12 488

1997 290 60 30 14 12 406

1998 275 112 13 12 9 421

1999 278 145 13 12 11 459

2000 275 147 11 12 11 456

2001 323 141 7 7 12 490

2002 317 106 3 13 13 452

2003 253 106 3 8 11 381

2004 266 111 4 10 139 530

2005 428 143 9 28 68 676

2006 511 153 4 53 77 798

2007 531 120 10 71 103 835

2008 416 102 7 52 69 646

2009 364 229 2 4 159 758

2010 346 178 8 77 91 700

Sumber: Statistik Perikanan PPN Palabuhanratu tahun 1996-2010

4.3.4 Daerah penangkapan ikan

Kapal motor dengan menggunakan alat tangkap pancing tonda beroperasi pada perairan yang terdapat rumpon. Daerah penangkapan pancing tonda di PPN Palabuhanratu berada di sekitar 6oLS-9oLS dan antara 105oBT-109oBT, dengan lama operasi penangkapan selama 3-11 hari. Berikut adalah gambar dari perkiraan daerah penangkapan pancing tonda.


(37)

Gambar 6 Daerah penangkapan pancing tonda

Legenda:

: Daratan : Laut : Daerah penangkapan ikan : Laut


(38)

24

5 HASIL PENELITIAN

5.1 Jumlah Produksi YellowfinTuna

Pendataan produksi tuna di PPN Palabuhanratu pada tahun 1993-2001 mengalami perbedaan dengan data produksi tuna pada tahun 2002-2011. Perbedaan ini terlihat pada pengelompokkan jumlah produksi, yaitu pada tahun 1993-2001 jumlah produksi seluruh jenis tuna dijadikan dalam satu data, sedangkan pada tahun 2002-2011 jumlah produksi tuna sudah dikelompokkan berdasarkan jenisnya. Data yang diambil dalam penelitian ini hanya pada 15 tahun terakhir yaitu pada tahun 1997-2011, untuk lebih jelas dapat dilihat pada Tabel 5.

Tabel 5 Jumlah produksi hasil tangkapan tuna di PPN Palabuhanratu tahun 1997-2011

Tahun Tuna (kg) Perkembangan

(kg) (%)

1997 393.246 - -

1998 193.741 -199.505 -50,73

1999 177.972 -157.69 -8,14

2000 104.628 -733.44 -41,21

2001 86.183 -18.445 -17,63

2002 177.926 91.743 106,45

2003 178.089 163 0,09

2004 641.702 463.613 260,33

2005 1.495.105 853.403 132,99

2006 677.842 -817.263 -54,66

2007 683.271 5.429 0,80

2008 590.557 -92.714 -13,57

2009 542.584 -47.973 -8,12

2010 1.730.949 1.188.365 219,02

2011 1.069.438 -661.511 -38,22

Sumber: Statistik Perikanan PPN Palabuhanratu tahun 1997-2011

Catatan: 1997-2001 data seluruh jenis tuna, 2002-2011 data khusus YellowfinTuna

Berdasarkan Tabel 5 terlihat bahwa jumlah produksi seluruh jenis tuna pada tahun 1997-2002 mengalami fluktuasi. Tahun 1997 jumlah produksi seluruh jenis tuna sebesar 393.246 kg, tetapi mulai tahun 1998-2001 jumlah produksi mengalami penurunan secara terus-menerus dan nilai terendah terjadi tahun 2001 sebesar 86.183 kg. Jumlah produksi mulai mengalami peningkatan pada tahun 2002, yaitu sebesar 177.926 kg. Jumlah produksi tuna mulai dikelompokkan pada tahun 2003, maka jumlah produksi Yellowfin Tuna dapat terlihat fluktuasinya mulai pada tahun 2003. Produksi Yellowfin Tuna


(39)

mengalami keadaan minimum pada tahun 2009 sebesar 542.584 kg. Tahun 2010 produksi Yellowfin Tuna meningkat dan mengalami keadaan maksimum dalam 15 tahun terakhir ini sebesar 1.730.949 kg, tetapi tahun 2011 produksi Yellowfin Tuna mengalami penurunan menjadi 1.069.438 kg.

5.2 Komposisi Ukuran Yellowfin Tuna yang Tertangkap

Jenis kapal perikanan yang beroperasi di Palabuhanratu untuk menangkap

Yellowfin Tuna ada 4 jenis yaitu kapal gillnet, kapal pancing ulur dan tonda, kapal purse seine dan kapal rawai tuna (long line), dari keempat jenis kapal tersebut hanya 2 jenis yang beroperasi pada saat pengambilan sampel yaitu kapal tonda dan kapal longline. Sampel untuk pengukuran panjang dan berat diambil dari hasil tangkapan kapal tonda karena kapal longline tidak bisa dilakukan pengukuran berat.

Gambar 7 Hasil tangkapan YellowfinTuna yang didaratkan

Sampel Yellowfin Tuna yang diambil adalah sebanyak 296 ekor, yang memiliki panjang total antara 84-164 cm dan berat antara 0 kg-74,5 kg. Panjang Yellowfin Tuna

yang banyak tertangkap berada pada selang ukuran panjang 102-110 cm sebanyak 80 ekor, sedangkan yang sedikit tertangkap adalah yang berukuran 156-164 cm sebanyak 1 ekor. Berat YellowfinTuna yang banyak tertangkap berada pada selang antara 0 ≤ n ≤ 24,5 kg sebanyak 235 ekor, sedangkan yang sedikit tertangkap berada pada selang 50 ≤ n ≤ 74,5 sebanyak 1 ekor.


(40)

26 Tabel 6 Ukuran panjang dan berat Yellowfin Tuna layak tangkap

Literatur Length at

maturity (cm)

Weight at maturity (kg) McPherson (1991) diacu dalam Shaefer (2001) 108 -

Fromentin dan Fonteneau (2000) 105 25

Lehodey dan Leroy (1999) 110 -

Nootmorn, Yakoh dan Kawises (2005) 110 25

Menurut Nootmorn, Yakoh dan Kawises (2005) data length at maturity Yellowfin Tuna adalah 110 cm dan weigth at maturity Yellowfin adalah 25 kg. Sehingga berdasarkan length at maturity dan weigth at maturity Yellowfin Tuna, didapatkan hasil bahwa terdapat 184 ekor (62,16%) ikan layak tangkap dan 112 ekor (37,84%) ikan tidak layak tangkap untuk panjang ikan. Sementara untuk berat, terdapat 61 ekor (20,61%) untuk ikan layak tangkap dan 235 ekor (79,39%) untuk ikan tidak layak tangkap. Data yang lebih rinci dapat dilihat di Gambar 8a dan 8b.

(a) Panjang sampel YellowfinTuna 6

26 80

64 64

48

5

2 1

0 10 20 30 40 50 60 70 80 90 Ju m lah h asi l tan g kap an ( e ko r) Panjang (cm/ekor)


(41)

(b) Sampel berat Yellowfin Tuna

Gambar 8 Ukuran Yellowfin Tuna yang tertangkap

Gambar 9 Pengukuran panjang Yellowfin Tuna 235

60

1 0

50 100 150 200 250

25 50 75

Ju

m

lah

h

asi

l

tan

g

kap

an

(

e

ko

r)


(42)

28 Gambar 10 Pengukuran berat Yellowfin Tuna

Berdasarkan panjang, jumlah Yellowfin Tuna yang layak tangkap lebih besar dibandingkan dengan Yellowfin Tuna yang tidak layak tangkap walaupun selisihnya tidak terlalu besar. Kondisi yang berbeda terjadi pada berat ikan, karena jumlah yang tidak layak tangkap jumlahnya lebih besar dibandingkan dengan yang layak tangkap dan memiliki selisih yang besar pula. Rekomendasi untuk pengukuran ikan layak tangkap adalah dengan panjang ikan karena tingkat kematangan gonad ikan dapat diketahui dengan panjang ikan tersebut.

5.3 Parameter Oseanografi 5.3.1 Klorofil-a

Data klorofil-a selama 15 tahun terakhir (1997–2011) disajikan pada Gambar 11. Berdasarkan gambar terlihat klorofil-a mengalami perubahan yang signifikan setiap tahunnya. Tahun 1997 konsentrasi klorofil-a mengalami kondisi minimum pada kisaran 0,17 mg/m3dan kondisi maksimum berada pada kisaran 0,43mg/m3, sedangkan nilai median berada pada angka 0,21mg/m3. Tahun 2011 kondisi minimum dan maksimum klorofil-a mengalami peningkatan yaitu menjadi 0,30 mg/m3dan 0,47 mg/m3, sedangkan nilai median menjadi 0,35 mg/m3. Peningkatan ini mulai terjadi pada tahun 2000 dan terus menerus mengalami peningkatan setiap tahunnya hingga tahun 2003, meskipun mengalami penurunan pada tahun 2004, 2005, 2007-2009 dan 2011 tetapi klorofil-a cenderung meningkat dibandingkan dengan tahun 1997. Peningkatan konsentrasi


(43)

klorofil-a ini menunjukkan bahwa di perairan Indonesia klorofil-a semakin banyak atau subur. Peningkatan klorofil-a dapat dilihat pada Gambar 11.

2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 Tahun K o n s e n tr a s i k lo ro fi l-a ( m g /m 3 )

Gambar 11 Fluktuasi konsentrasi klorofil-a

Kondisi maksimum tertinggi klorofil-a terjadi pada tahun 2006 yaitu sebesar 0,52 mg/m3 dengan kondisi minimumnya sebesar 0,31 mg/m3, sedangkan kondisi minimum terendah terjadi pada tahun 1997 sebesar 0,17mg/m3dengan kondisi maksimum sebesar 0,43 mg/m3. Menurut Romimoharto dan Juwana (2001) perubahan yang terjadi pada konsentrasi klorofil-a dapat diakibatkan oleh faktor-faktor lain yang mempengaruhinya, seperti sinar matahari (cahaya) dan cuaca melalui tutupan awan, angin dan secara tidak langsung melalui suhu. Perubahan dari konsentrasi klorofil-a ditunjukkan pada Gambar 12.


(44)

30

Tahun 1999 Tahun 2000

Tahun 2001 Tahun 2002

Tahun 2003 Tahun 2004

Tahun 2005 Tahun 2006

Tahun 2007 Tahun 2008


(45)

Tahun 2011

Gambar 12 Konsentrasi klorofil-a tahun 1997-2011

Berdasarkan Gambar 12 terlihat bahwa konsentrasi klorofil-a berada pada jumlah yang banyak disekitar pulau Kalimantan, Sulawesi, Irian Jaya, Utara Sumatera dan Utara Jawa. Sedangkan pada perairan selatan pulau Jawa konsentrasi klorofil-a pada tahun 1997-2011 cenderung berubah-ubah. Konsentrasi klorofil-a tahun 1997 berada pada kondisi tinggi, dan mengalami penurunan mulai tahun 1998-2006 dan kembali meningkat pada tahun 2007.

Tingginya konsentrasi klorofil-a pada tahun 1997 disebabkan adanya nutrient yang berasal dari daratan bukan disebabkan adanya upwelling. Upwelling di Selatan Jawa terjadi pada bulan Juli-Agustus, puncaknya terjadi pada bulan September dan mulai menghilang pada bulan Oktober. Upwelling yang terjadi di Selatan Jawa dipengaruhi oleh sistem angin muson dan perubahan iklim global yaitu El Nino dan La Nina (Dipo, Nurjaya dan Syamsudin 2011).

5.3.2 Suhu permukaan laut

Berdasarkan data suhu permukaan laut yang disajikan pada Gambar 13 selama 15 tahun terakhir (1997-2011), menunjukkan bahwa suhu permukaan laut tahun 2000-2009 cenderung berada dalam keadaan konstan. Tahun 1997 suhu permukaan laut mengalami kondisi maksimum sebesar 29oC dan kondisi minimum sebesar 27oC, dengan nilai median 28oC. Tahun 2011 kondisi maksimum dan minimum suhu permukaan laut mengalami peningkatan yaitu menjadi 30oC dan 28oC, dengan nilai median 29oC. Kondisi maksimum tertinggi suhu permukaan laut terjadi pada tahun 2010 yaitu sebesar 31oC dengan kondisi minimumnya sebesar 29oC, sedangkan kondisi minimum terendah terjadi pada tahun 1997 yaitu sebesar 27oC dengan kondisi maksimum sebesar 29oC.


(46)

32 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 31 30 29 28 27 Tahun S u h u p e rm u k a a n l a u t (C e lc iu s )

Gambar 13 Suhu permukaan laut

Gambar 13 menunjukkan, suhu permukaan laut selama 15 tahun terakhir tidak mengalami perubahan yang drastis walaupun terjadi penurunan dan kenaikkan. Hal ini akan berbeda dengan suhu yang terjadi di daratan, yang dimana perubahan suhu akan lebih terasa secara langsung dan terlihat secara jelas perubahannya. Menurut Hutabarat (2001) perbedaan suhu di laut dan di daratan terjadi karena adanya perbedaan kapasitas daratan dan lautan untuk menyimpan panas. Sehingga mengakibatkan daratan akan lebih cepat bereaksi menjadi panas ketika menerima radiasi matahari dibandingkan lautan. Perubahan suhu permukaan laut dapat juga dilihat pada Gambar 14.

Tahun 1997 Tahun 1998


(47)

Tahun 2001 Tahun 2002

Tahun 2003 Tahun 2004

Tahun 2005 Tahun 2006

Tahun 2007 Tahun 2008

Tahun 2009 Tahun 2010

Tahun 2011


(48)

34 Gambar 14 menunjukkan perubahan permukaan laut dapat terlihat dari perubahan warna yang terjadi pada setiap tahunnya. Tahun 1997-1999 warna yang tampak tidak seperti tahun-tahun yang lain, ini disebabkan karena data pada tahun tersebut berbeda situs pengambilannya walaupun asalnya sama dari NASA. Sehingga pada saat diolah dalam program seadas tidak hanya menampakkan warna putih pada perairan dan menghasilkan warna yang berbeda dengan tahun lain. Sehingga perubahan suhu permukaan laut yang dapat terlihat pada gambar hanya bisa dilihat perubahannya mulai tahun 2000.

Berdasarkan Gambar 14 pada perairan Indonesia tampak warna orange yang mendekati merah dan kuning. Warna kuning menandakan bahwa suhu berada di kisaran 28oC-29oC, sedangkan untuk warna orange yang mendekati merah menandakan bahwa suhu berada di kisaran 30oC-31oC. Pada gambar mulai tahun 2000-2011 terlihat bahwa memang terjadi perubahan suhu permukaan laut dibeberapa perairan Indonesia tetapi suhu cenderung berada pada kisaran 30oC-31oC. Sehingga berdasarkan gambar dapat lebih menguatkan kembali bahwa suhu permukaan laut walaupun mengalami perubahan tetapi perubahan yang terjadi tidak drastis melainkan perlahan-lahan.

5.3.3 Tinggi paras laut

Data tinggi paras laut yang dianalisis adalah data 15 tahun terakhir yaitu tahun 1997-2011. Berdasarkan data yang diperoleh tinggi paras laut pada setiap tahunnya cenderung mengalami peningkatan. Tahun 1997 tinggi paras laut mengalami kondisi maksimum sebesar 16 mm dan kondisi minimum sebesar -0,12 mm, dengan nilai median sebesar -1,56 mm. Tahun 2011 kondisi maksimum dan minimum tinggi paras laut mengalami peningkatan yaitu menjadi 45 mm dan 24 mm, dengan nilai median 32 mm. Kondisi maksimum tertinggi tinggi paras laut terjadi pada tahun 2009 sebesar 47 mm dengan kondisi minimum sebesar 25 mm. Perubahan paras laut dapat dilihat di Gambar 15.


(49)

2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 50 40 30 20 10 0 -10 Tahun T in g g i p a ra s l a u t (m m )

Gambar 15 Perubahan tinggi paras laut 5.4 Curah hujan

Data curah hujan yang dianalisis merupakan data rata-rata curah hujan yang dikhususkan hanya untuk wilayah Kabupaten Sukabumi karena Palabuhanratu termasuk dalam wilayah Kabupaten Sukabumi. Data yang dianalisis adalah data 15 tahun terakhir (tahun 1997-2011). Berdasarkan Gambar 16, rata-rata curah hujan di wilayah Kabupaten Sukabumi mengalami kondisi maksimum pada tahun 2010 sebesar 4.879 mm. Kondisi minimum terjadi pada tahun 1997 sebesar 1.658 mm. Tahun 2001 rata-rata curah hujan sebesar 2.985 mm mengalami penurunan hingga tahun 2004 menjadi 1.885 mm. Kemudian peningkatan mulai terjadi pada tahun 2005 menjadi 3.659 mm, tetapi tahun 2006 rata-rata curah hujan mengalami penurunan dan terjadi pula pada tahun 2009 menjadi 2.295 mm.


(50)

36

Sumber: Data 1997-2010 dari BPS Kabupaten Sukabumi, data 2011 dari DISPARBUDPORA Kab Sukabumi prakiraan rata-rata tahunan curah hujan.

Gambar 16 Curah hujan Kabupaten Sukabumi tahun 1997-2011

Gambar 16 menunjukkan bahwa rata-rata curah hujan tahun 1997-2011 cenderung mengalami peningkatan, walaupun terdapat fluktuasi tahun-tahun tertentu. 5.5 Hubungan Variabilitas Parameter Oseanografi dan Curah Hujan dengan Hasil

Tangkapan

Berdasarkan uji normalitas yang dilakukan terhadap parameter oseanografi dan curah hujan dengan hasil tangkapan, semua variabel normal kecuali SPL karena memiliki data yang relatif sama dalam beberapa tahun. Data parameter oseanografi dan curah hujan, setelah dilakukan uji kolinearitas tidak memiliki linier atau korelasi yang tinggi karena memiliki nilai VIF (varians inflation factor) lebih kecil dari 10. Variabilitas parameter oseanografi dan curah hujan dengan hasil tangkapan diketahui dengan mencari koefisien keragaman (koefisien varians). Hasil uji normalitas, uji kolinearitas dan koefisien keragaman masing-masing variabel tersaji dalam Tabel 7.

Tabel 7 Nilai normalitas, VIF dan koefisien keragaman antara parameter oseanografi dan curah hujan dengan hasil tangkapan

Nilai normalitas VIF Koefisien keragaman (%)

SPL 0,010 3,249 6,10

Klorofil-a 0,150 4,440 15,40

TPL 0,150 3,753 59,19

Curah hujan 0,150 1,084 29,31

Berdasarkan Tabel 7 terlihat variabel yang memiliki koefisien keragaman terkecil adalah SPL (suhu permukaan laut) dengan nilai 6,10%, sedangkan variabel yang

1658 3596

3002

2718 2985

2435 2206 1885 3659 3247 2531 2852 2295 4879 2085 0 1000 2000 3000 4000 5000 6000

1997 1999 2001 2003 2005 2007 2009 2011

C u rah h u jan ( m m ) Tahun


(51)

memiliki koefisien keragaman terbesar adalah TPL (tinggi paras laut) dengan nilai 59,19%. Variabel klorofil-a dan curah hujan memiliki koefisien keragaman sebesar 15,40% dan 29,31%. Hasil ini menunjukkan bahwa variabel yang memiliki tingkat variabilitas tinggi adalah TPL, kemudian diikuti oleh curah hujan, klorofil-a dan dan SPL yang memiliki variabilitas terendah.

5.6 Hubungan Parameter Oseanografi dan Curah Hujan dengan Hasil Tangkapan

YellowfinTuna

Keterkaitan parameter oseanografi dan curah hujan dengan hasil tangkapan

Yellowfin Tuna dilihat dengan menggunakan uji statistik regresi linier berganda. Data parameter oseanografi dan curah hujan dengan hasil tangkapan merupakan data dalam periode 15 tahun terakhir yaitu tahun 1997-2011. Hasil dari uji statistik keterikatan tersebut dapat dilihat pada Tabel 8.

Tabel 8 Uji statistik parameter oseanografi dan curah hujan dengan hasil tangkapan Analysis of variance

Source DF F P

Regression 4 5,72 0,012

Residual Error 10

Total 14

R-Sq = 69,6 % R-Sq (adj) = 57,4 %

Berdasarkan Tabel 8 terlihat bahwa, seluruh variabel X signifikan terhadap produksi hasil tangkapan karena memiliki nilai P-value 0,012 yaitu < 0,05. Analisis regresi parameter oseanografi dan curah hujan terhadap produksi hasil tangkapan menghasilkan nilai R2 sebesar 69,6 % dan nilai r sebesar 0,83. Model regresi dari parameter oseanografi dan curah hujan terhadap produksi hasil tangkapan adalah:

Y = 2.470.429 – 112.793 X1 + 937.609 X2 + 36.936 X3+ 236 X4

Dimana,

Y : Produksi Hasil tangkapan X1 : Suhu permukaan laut

X2 : Klorofil-a

X3 : Tinggi paras laut


(52)

38

6

PEMBAHASAN

6.1 Produksi Hasil Tangkapan Yellowfin Tuna

Berdasarkan data statistik Palabuhanratu tahun 1997-2011, hasil tangkapan

Yellowfin Tuna mengalami fluktuasi. Jika dilihat berdasarkan data hasil tangkapan perbandingan jumlah hasil tangkapan pada tahun 1997 dengan tahun 2011 mengalami perbedaan yang sangat jauh. Pada tahun 1997 jumlah hasil tangkapan sebesar 393.246 kg, sedangkan tahun 2011 sebesar 1.069.438 kg. Tahun 1997 data hasil tangkapan seluruh jenis tuna masih dijadikan satu data sehingga jika dilakukan perbandingan antara 3 jenis tuna yang didaratkan di Palabuhanratu maka untuk jenis tuna Yellowfin akan mengalami jumlah yang lebih sedikit dari jumlah total hasil tangkapan tuna yang didaratkan di Palabuhanratu pada tahun 1997. Jika dilakukan perbandingan antara jumlah hasil tangkapan pada tahun 1997 dengan tahun 2011 maka dapat dikatakan bahwa hasil tangkapan tuna mengalami peningkatan. Peningkatan ini disebabkan karena mulai berkembang dan meningkatnya jumlah alat tangkap untuk menangkap tuna. Menurut data statistik PPN Palabuhanratu alat penangkap tuna mulai berkembang pada tahun 2003 dan 2004 seperti alat tangkap tonda dan long line. Tetapi untuk hasil tangkapan Yellowfin Tuna tidak bisa hanya dilakukan perbandingan antara tahun 1997 dengan 2011 saja tetapi harus dilihat pertahunnya agar terlihat perkembangan dari hasil tangkapan.

Tahun 1997 hasil tangkapan tuna sebesar 393.246 kg, kemudian mengalami penurunan terus menerus selama empat tahun yaitu pada tahun 1998-2001, sehingga pada tahun 2001 hasil tangkapan tuna menjadi 86.183 kg (-17,63%). Data tersebut untuk seluruh jenis tuna, jadi ketika dilakukan perbandingan kembali untuk tiga jenis tuna yang didaratkan maka untuk Yellowfin Tuna berada pada jumlah yang lebih sedikit atau dapat dikatakan mengalami penurunan yang cukup tinggi. Tahun 2002 jumlah hasil tangkapan tuna mengalami peningkatan menjadi 177.926 kg (106,45%). Data tuna pada tahun 2003 sudah dibagi berdasarkan jenisnya sehingga mulai tahun 2003 bisa terlihat fluktuasi dari hasil tangkapan Yellowfin Tuna. Tahun 2003-2005 hasil tangkapan Yellowfin Tuna

mengalami peningkatan, yaitu pada tahun 2003 sebesar 178.089 kg (0,09%) sedangkan pada tahun 2005 menjadi 1.495.105 kg (132,99%). Tetapi pada tahun 2006-2009 yaitu selama empat tahun hasil tangkapan Yellowfin Tuna mengalami penurunan hingga menjadi 542.584 kg atau -8,12% (tahun 2009). Kemudian pada tahun 2010 hasil


(53)

tangkapan mengalami peningkatan menjadi 1.730.949 kg (219,02%), tetapi peningkatan ini tidak bertahan lama karena pada tahun 2011 langsung mengalami penurunan menjadi 1.069.438 kg (-38,22%).

Fluktuasi produksi hasil tangkapan Yellowfin Tuna terjadi pula di Kabupaten Pacitan. Menurut Ma’arif (2011) data produksi tuna di Kabupaten Pacitan dari tahun 2009 terus mengalamipeningkatan. Peningkatan terbesar terjadi pada tahun 2006-2007, yaitu sebesar1.453,58%. Data terbaru tahun 2010 memperlihatkan bahwa produksi tuna mengalami penurunan yaitu sebesar 5,84%. Jumlah produksi tuna di Pacitan tahun 2009 adalah sebesar 1.688.588 kg dan tahun 2010 sebesar 1.589.989 kg.

Selain itu, di PPN Prigi Trenggalek Jawa Timur, produksi hasil tangkapan tuna mengalami fluktuasi pula. Produksi hasil tangkapan tuna di PPN Prigi cenderung mengalami penurunan dari tahun 2000 sampai 2010. Penurunan terjadi pada tahun 2000-2003 (dari 508 ton menjadi 138 ton), 2005-2008 (dari 1.179 ton menjadi 323 ton) dan 2009-2010 (dari 691,9 ton menjadi 503,3 ton). Sedangkan peningkatan produksi tuna hanya terjadi pada tahun 2004 (sebesar 560 ton), 2005 (sebesar 1.179 ton) dan 2009 (sebesar 691,9 ton) (Ross 2011).

Produksi hasil tangkapan yang menurun dapat disebabkan adanya variabilitas parameter oseanografi dan curah hujan sehingga Yellowfin Tuna harus beradaptasi dengan lingkungan perairan. Karena variabilitas parameter oseanografi dan curah hujan berkaitan erat dengan lingkungan perairan yang menyebabkan perubahan biologis ikan dan akhirnya mempengaruhi perekrutan, pertumbuhan dan perilaku penangkapan ikan. Selain itu, pola migrasi Yellowfin Tuna erat dengan kondisi laut yang sesuai dengan habitat fisik seperti suhu dan sumber makanan yang memadai. Menurut Miller (2007)

climate variability berdampak nyata pada kelimpahan, konsentrasi, lokasi dan penangkapan sumberdaya tuna.

6.2Komposisi Ukuran Yellowfin Tuna

Yellowfin Tuna merupakan salah satu jenis tuna yang didaratkan di PPN Palabuhanratu. Jenis kapal perikanan yang digunakan untuk menangkap tuna di PPN Palabuhanratu ada beberapa macam yaitu kapal gillnet, kapal pancing ulur dan tonda, kapal purse seine dan kapal rawai tuna (long line), tetapi yang beroperasi pada saat melakukan penelitian adalah kapal tonda dan rawai tuna (long line). Jenis tuna yang banyak didaratkan pada saat penelitian adalah Yellowfin Tuna karena jenis kapal yang


(54)

40 sering beroperasi dan mendaratkan tuna setiap harinya adalah kapal tonda. Kapal tonda merupakan jenis kapal perikanan yang beroperasi hanya beberapa hari dengan hasil tangkapan utama adalah ikan tuna yang berada di lapisan permukaan perairan atau homogen.

Ukuran Yellowfin Tuna yang banyak tertangkap di PPN Palabuhanratu berada pada selang panjang 102-110 cm sebanyak 80 ekor dan berat antara 8-24 kg sebanyak 235 ekor. Data length at maturity dan weigth at maturity yang digunakan adalah data menurut Nootmorn, Yakoh dan Kawises (2005) karena literatur tersebut merupakan

length at maturity dan weigth at maturity terbaru dibandingkan dengan literatur lainnya. Berdasarkan data length at maturity Yellowfin Tuna terdapat 184 ekor (62,16%) ikan layak tangkap dan 112 ekor (37,84%) ikan tidak layak tangkap. Sedangkan untuk weigth at maturity terdapat 61 ekor (20,61%) ikan layak tangkap dan 235 ekor (79,39%) ikan tidak layak tangkap. Berdasarkan hasil tersebut terlihat bahwa Yellowfin Tuna yang banyak tertangkap sudah mencapai matang gonad 110 cm untuk panjang, tetapi untuk berat banyak yang belum mencapai matang gonad yaitu kurang dari 25 kg. Pada penelitian ini layak atau tidak layaknya Yellowfin Tuna untuk ditangkap berdasarkan dari ukuran panjang Yellowfin yaitu telah mencapai matang gonad dengan ukuran 110 cm. Hal ini dikarenakan Yellowfin Tuna pertama kali matang gonad dilihat berdasarkan ukuran panjang, yaitu 57 cm bukan berdasarkan ukuran berat (Yesaki 1983 diacu dalam Simbolon 2011).

Data hasil lenght at maturity dan weight at maturity Yellowfin Tuna menunjukkan bahwa daerah penangkapan ikan sudah mulai tidak potensial karena meskipun berdasarkan data panjang ikan layak tangkap lebih banyak jumlahnya, tetapi selisihnya sedikit dengan jumlah ikan yang tidak layak tangkap. Selain itu, data berat ikan menunjukkan ikan tidak layak tangkap lebih banyak jumlahnya dibandingkan ikan yang layak tangkap dan memiliki selisih yang cukup tinggi.

Keadaan yang hampir sama terjadi di Kabupaten Pacitan, karena menurut Ma’arif (2011) di Kabupaten Pacitan ikan yang tidak layak tangkap lebih besar jumlahnya dibandingkan dengan ikan yang tidak layak tangkap. Yellowfin Tuna yang tidak layak tangkap sebanyak 102 ekor (68%), sedangkan yang layak tangkap sebanyak 48 ekor (32%). Hal yang serupa terjadi pula di Sadeng Yogyakarta, menurut Wiratama (2011) tuna yang didaratkan di Sadeng lebih besar jumlahnya yang tidak layak tangkap


(55)

dibandingkan dengan yang layak tangkap. Jumlah ikan yang tidak layak tangkap sebanyak 148 ekor, sedangkan yang layak tangkap sebanyak 6 ekor. Hal ini menunjukkan bahwa daerah penangkapan ikan memang sudah mulai tidak potensial karena banyak ikan-ikan yang masih berukuran kecil atau belum matang gonad tertangkap oleh nelayan. Panjang dari mata pancing dapat menjadi salah satu faktor banyaknya ikan-ikan yang masih berukuran kecil tertangkap oleh nelayan, karena panjang mata pancing berhubungan erat dengan kedalaman suatu perairan.

6.3 Parameter Oseanografi dan Curah Hujan

Parameter oseanografi yang diteliti adalah suhu permukaan laut, klorofil dan tinggi paras laut dengan pertambahan data curah hujan. Salinitas tidak diteliti pada penelitian ini karena untuk data salinitas perairan selama 15 tahun terakhir (1997-2011) NASA tidak memilikinya. Satelit yang digunakan NASA untuk salinitas masih terbilang baru dan untuk data salinitas tidak bisa digunakan untuk penelitian karena masih ada perbaikan setiap waktunya untuk data tersebut.

Berdasarkan data hasil penelitian yang diperoleh suhu permukaan laut tahun 1997 mengalami kondisi maksimum sebesar 29oC dan kondisi minimum sebesar 27oC, sedangkan tahun 2011 kondisi maksimum menjadi 30oC dan minimum sebesar 28oC. Klorofil-a pada tahun 1997 jumlah konsentrasinya mengalami kondisi minimum pada kisaran 0,17 mg/m3 dan kondisi maksimum berada pada kisaran 0,43mg/m3, sedangkan tahun 2011 kondisi minimum dan maksimum klorofil-a mengalami peningkatan yaitu menjadi 0,30 mg/m3 dan 0,47 mg/m3. Selain itu, peningkatan pun terjadi pada tinggi paras laut. Tahun 1997 tinggi paras laut mengalami kondisi maksimum sebesar 16 mm dan kondisi minimum sebesar -0,12 mm, sedangkan tahun 2011 kondisi maksimum dan minimum tinggi paras laut mengalami peningkatan yaitu menjadi 45 mm dan 24 mm. Selain itu, rata-rata curah hujan mengalami peningkatan pada tahun 2009 sebesar 191 mm dari tahun 1997 yang hanya 138 mm.

Peningkatan yang terjadi pada klorofil-a mengindikasikan bahwa tingkat kesuburan perairan Indonesia cenderung meningkat sehingga akan mengakibatkan ikan-ikan pelagis kecil akan berkumpul disekitar perairan subur tersebut, dan secara tidak langsung maka akan menarik ikan-ikan pelagis besar seperti Yellowfin Tuna untuk berkumpul pada perairan yang sama. Selain itu, perubahan yang terjadi pada suhu akan mengakibatkan perubahan sumberdaya Yellowfin Tuna, karena Yellowfin Tuna akan


(1)

55

Lampiran 6 Rata-rata bulanan tinggi paras laut

Tinggi paras laut

Tahun

(mm)

1997

1

1998

3

1999

4

2000

8

2001

14

2002

17

2003

19

2004

22

2005

27

2006

28

2007

27

2008

30

2009

34

2010

35


(2)

Lampiran 7 Rata-rata bulanan curah hujan Kabupaten Sukabumi

Curah hujan

Tahun

(mm)

1997

1.658

1998

3.596

1999

3.002

2000

2.718

2001

2.985

2002

2.435

2003

2.206

2004

1.885

2005

3.659

2006

3.247

2007

2.531

2008

2.852

2009

2.295

2010

4.879


(3)

57

Lampiran 8 Klorofil-a di perairan Palabuhanratu

Tahun 1997 Tahun 1998 Tahun 1999 Tahun 2000

Tahun 2001 Tahun 2002 Tahun 2003 Tahun 2004

Tahun 2005 Tahun 2006 Tahun 2007 Tahun 2008


(4)

Lampiran 9 Suhu permukaan laut di perairan Palabuhanratu

Tahun 1997 Tahun 1998 Tahun 1999 Tahun 2000

Tahun 2001 Tahun 2002 Tahun 2003 Tahun 2004

Tahun 2005 Tahun 2006 Tahun 2007 Tahun 2008


(5)

59

Lampiran 10 Dokumentasi penelitian


(6)

Lampiran 11 Hasil olahan data statistik

Regression Analysis: Y versus X1, X2, X3, X4

The regression equation is

Y = 2470429 - 112793 X1 + 937609 X2 + 36936 X3 + 236 X4

Predictor Coef SE Coef T P Constant 2470429 2127949 1.16 0.273 X1 -112793 80946 -1.39 0.194 X2 937609 3444749 0.27 0.791 X3 36936 14267 2.59 0.027 X4 235.8 111.6 2.11 0.061

S = 329276 R-Sq = 69.6% R-Sq(adj) = 57.4%

Analysis of Variance

Source DF SS MS F P Regression 4 2.48158E+12 6.20396E+11 5.72 0.012 Residual Error 10 1.08423E+12 1.08423E+11

Total 14 3.56581E+12

Source DF Seq SS X1 1 4.75944E+11 X2 1 4.15119E+11 X3 1 1.10597E+12 X4 1 4.84549E+11

Stepwise Regression: Y versus X1, X2, X3, X4

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Y on 4 predictors, with N = 15

Step 1 2 Constant -12236 -610825 X3 29472 26187 T-Value 3.51 3.46 P-Value 0.004 0.005 X4 237 T-Value 2.15 P-Value 0.052 S 375137 331575 R-Sq 48.69 63.00 R-Sq(adj) 44.75 56.83 Mallows Cp 5.9 3.2