Dekoder Operasi logika Exclusive OR

sebuah clock melalui penambahan sebuah gerbang NAND. Gambar rangkaian dasrnya ditunjukkan dalam Gambar 3.13. S Q R Q Clock Master Flip flop Kontrol Clock I Kontrol Clock II Slave Flip flop Gambar 3.13. Master-Slave Flip-flop menggunakan NAND Pertama kita lihat pada master flip-flop. Jika masukan clock adalah 0 kedua keluaran dari kontrol clock I adalah 1. Ini artinya bahwa suatu perubahan keadaan pada masukan S dan R tidak berpengaruh pada master flip-flop. Flip flop tersebut mempertahankan keadaan. Di sisi lain jika masukan clock adalah 1 maka keadaan dari S dan R menentukan keadaan master flip-flop. Slave flip flop memperlihatkan perilaku yang sama. Kadang kontrol clock adalah dibalik oleh sebuah inverter. Ini artinya bahwa clock 1 dari master flip flop menjadi 0 pada slve flip flop. Operasi flip-flop ini dijelaskan lebih mudah dari sekuensial temporal dari pulsa clock seperti ditunjukan oleh Gambar 3.14. V clock t 1 t t t t 1 2 3 4 Gambar 3.14. Sekuensial temporal untuk master slave flip flop t1 : Ketika pulsa clock muncul dari 0 ke 1 terjadi toleransi daerah 0 ke arah 1 keluaran clock terbalik ke 0. Misalnya keluaran slave flip flop akan off dan mempertahankan kondisi. t2 : Ketika pulsa clock muncul dari 0 ke 1 mencapai batas terendah dari toleransi daerah 1 masukan dari master flip flop adalah dapat diatur, misalnya master flip flop dipengaruhi oleh masukan R dan S. t3 : Ketika pulsa clock turun dari 1 ke 0 terjadi toleransi daerah 1 ke arah 0 masukan master flip flop kembali ditahan. Mmisalnya master flip flop menghasilkan keadaan baru. T4 : Ketika pulsa clock turun dari 1 ke 0 mencapai batas tertinggi dari toleransi daerah 0 masukan dari master flip flop adalah dapat diatur, misalnya master flip flop dipengaruhi oleh masukan R dan S. Hasilnya bahwa pengaruh masukan R dan S terjadi pada interval t 1 sampai t 2 data dikirim ke flip flop dan pada saat t 4 baru data dikirim ke keluaran. Selama masukan clock 0 data tersimpan di dalam flip flop.

3.6.2. JK Flip-flop

Pengembangan master slave flip flop pada prakteknya yang terpenting adalah Master slave JK flip flop yang dibangun dengan menyambungkan keluaran ke masukan gerbang seperti diperlihatkan Gambar 41.15. J Q K Q Clock Gambar 3.15. Rangkaian JK Flip flop menggunakan NAND Tabel Kebenaran t n t n+1 K J Q Q Q Q 1 1 1 1 1 1 Q Q a Simbol J K Q Q Clock b Gambar 3.16. Tabel kebenaran dan symbol JK Flip flop Keadaan masukan J = 1 dan K = 0 menghasilkan keluaran Q = 1 dan Q = 0 setalh pulsa clock. Untuk J = K = 1 keluaran akan selalu berubah setiap kali pulsa clock diberikan. t Clock 1 t Q 1 t Q 1 Gambar 3.17. Diagram pulsa JK flip flop ketika masukan J = K = 1

3.6.3. D Flip-flop

Suatu flip-flop yang mirip JK Master lve flip-flop untuk J = K = 1 adalah dikenal dengan nama D flip-flop. Versi yang paling banyak dipergunakan dalam praktek diperlihatkan pada Gambar 3.18. Q D Q Clock Gambar 3.18. Rangkaian D Flip flop menggunakan NAND Tabel Kebenaran t n t n+1 D Q Q 1 1 1 a Simbol K Q Q Clock b Gambar 3.19. Tabel kebenaran dan symbol D Flip flop Kelebihan D flip-flop dibandingkan dengan JK flip-flop bahwa data masukan dikirim ke keluaran selama pulsa clock berubah dari o ke 1. Jika clock = 1 dan data masukan di D berubah, perubahan tersebut tidak lama berpengaruh terhadap keadaan keluaran. Suatu perubahan di D selama clock = 1 mengakibatkan pengaruh ke keluaran hanya pada perubahan 0 ke 1 berikutnya. Karena perlambatan internal memungkinkan dengan flip flop ini mengenal sebuah umpan balik misalnya dari Q ke D tanpa menghasilkan oscilasi. Karena kelebihan tersebut sering D flip flop ini disebut sebagai Delay flip-flop. 3.7. Memory Elemen memory sangat menentukan dalam sistem mikrokomputer. Memory ini diperlukan untuk menyimpan program yang ada pada komputer dan data. Berbagai macam tipe memory dibedakan menurut ukuran , mode operasi, teknologi dan lain sebagainya dapat diperoleh