Penggunaan Metode Analisis Faktor Untuk Mengetahui Faktor Dominan Pernikahan Dini di Kecamatan Sei Rampah Kabupaten Serdang Bedagai

(1)

1

LAMPIRAN 1

KUESIONER PENELITIAN

PENGGUNAAN METODE ANALISIS FAKTOR UNTUK MENGETAHUI FAKTOR DOMINAN PERNIKAHAN DINI DI KECAMATAN

SEI RAMPAHKABUPATEN SERDANG BEDAGAI

Denganhormat.

Saya yang bertanda tangan di bawah ini: Nama : Dewi Rahmadani

NIM : 140823014

Adalah mahasiswa tingkat akhir program sarjana Matematika Universitas Sumatera Utara (USU) yang pada saat ini sedang melakukan penelitian dalam rangka penulisan skripsi sebagai syarat untuk mendapatkan gelar Sarjana Sains (S.Si).

Pengisian kuesioner ini diperkirakan tidak akan lebih dari lima menit dan data yang terkumpul hanya untuk kepentingan ilmiah semata, namun untuk lebih menjamin keamanan data para pengisi kuesioner, maka identitas pengisi kuesioner tidak akan ditampilkan sama sekali pada penulis skripsi. Pandangan, pemikiran dan opini anda sangat berguna bagi penelitian ini, dan saya berharap saudar/i berkenan meluangkan waktu untuk mengikuti survey ini.

Bila ada hal yang kurang jelas, anda dapat menghubungi saya dinomer Hp 082284361033. Atas bantuan dan partisipasi saudara/i dalam mengisi kuesioner ini, penulis mengucapkan terima kasih.


(2)

2

PETUNJUK PENGISIAN ANGKET

Dibawah ini ada beberapa pernyataan yang seluruhnya berkaitan dengan analisis faktor yang berhubungan pernikahan dini pada remaja di Kecamatan Sei Rampah Kabupaten Serdang Bedagai. Saya sangat mengharapkan agar saudar/i dapat memberikan jawaban tersebut sesuai dengan keadaan saudara yang sebenarnya. Peneliti minta maaf sebelumnya jika dari pernyatan-pernyataan nantinya telah menyinggung perasaan saudara/i. Saudara tidak perlu takut untuk menjawab pernyataan tersebut karena jawaban yang saudara/i berikan tidak untuk di PUBLIKASI. Oleh karena itu, saya hanya menginginkan jawaban yang saudara/i rasakan dan ketahui.

Adapun cara pengisian dari jawaban saudar/i antara lain:

1. Mohon dengan hormat bantuan saudara/i untuk mengisi seluruh pernyataan yang ada.

2. Pada kuesioner ini terdapat 11 variabel.

3. Berilah tanda ( ) atau tanda (×). Cukup 1 (satu) kali pengisian pada setiap pernyataan.

4. Ada 5 (lima) alternative jawaban,yaitu

SS = Sangat Setuju

S = Setuju

CS = Cukup Setuju TS = Tidak Setuju

STS = Sangat Tidak Setuju

IDENTITAS RESPONDEN

Nama :

Usia Ketika Menikah : ……… Tahun

Jenis Kelamin :[ ]Laki-laki [ ]Perempuan Pendidikan Terakhir :

Alamat :

NO PERNYATAAN SS S N TS STS


(3)

3

strategi/cara untuk bertahan secara ekonomi

2

Pernikahan di usia muda merupakan motif untuk memperoleh kebutuhan biologis atau pencegah perilaku seks pra-nikah.

3

Pernikahan muda umumnya dilakukan karena telah saling mencintai, rasa takut kehilangan pasangan dan merasa siap untuk menikah.

4

Perjodohan yang dilakukan orang tua memiliki pengaruh besar dalam terjadinya pernikahan di usia muda.

5

Sedikitnya keterpaparan informasi mengenai kesehatan reproduksi dan dampak pernikahan usia muda mendorong terjadinya pernikahan dini, karena remaja tidak memiliki pengetahuan dari sumber yang benar.

6

Rasa keinginan untuk segera mendapatkan tambahan anggota keluarga merupakan faktor yang berpengaruh terhadap pernikahan usia muda.

7

Dampak dari pergaulan bebas (married by

accident)berpengaruh tinggi untuk melakukan pernikahan dini.

8

Rendahnya tingkat pendidikan pengetahuan orang tua dan anak menyebabkan adanya kecenderungan mengawinkan anaknya yang masih dibawah umur.

9

Bila teman sebaya sudah banyak menikah maka dorongan untuk menikah bertambah besar tanpa mempertimbangkan usia 10

Latar belakang adat istiadat merupakan salah satu pendorong untuk melakukan pernikahan dini.

11

Semakin gencarnya ekspose seks dimedia massa menyebabkan kian Permisif/terbuka terhadap seks sehingga menarik perhatian remaja untuk lebih memilih cepat menikah di usia muda.


(4)

4

DATA PENELITIAN RESPONDEN LAMPIRAN 2

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

4 4 2 4 2 3 1 2 1 3 4

4 2 2 4 3 3 2 3 2 3 4

2 3 3 4 2 3 2 2 2 3 3

2 2 2 4 3 3 1 2 1 3 5

2 2 3 3 3 4 1 2 1 4 4

2 2 2 4 3 3 2 1 2 3 4

2 2 3 4 2 3 1 2 1 3 3

3 2 3 4 2 3 2 2 2 4 3

2 2 4 4 3 2 2 2 2 3 4

3 2 2 4 3 2 3 3 2 4 3

3 4 3 4 1 3 2 2 3 4 4

2 2 3 3 2 3 2 3 3 2 2

2 2 2 3 2 3 2 3 2 4 3

2 2 2 2 3 3 2 2 2 2 3

2 2 2 2 2 2 2 2 2 2 2

3 3 2 3 3 4 1 2 2 2 3

3 3 3 4 1 4 2 2 3 4 4

2 2 3 3 1 3 1 2 2 4 4

2 2 3 3 1 3 1 1 2 4 4

2 2 2 4 1 3 1 2 1 4 5

2 2 3 3 3 3 2 2 1 5 5

3 3 3 3 1 4 2 1 3 4 4


(5)

5

3 4 3 4 1 3 2 1 3 4 4

3 3 4 4 1 3 2 1 4 4 4

3 3 3 4 3 3 1 2 1 3 4

2 2 4 4 1 4 1 3 2 4 4

2 2 2 3 1 4 1 1 2 3 4

4 4 3 4 1 4 2 1 2 4 4

2 4 3 4 1 3 1 1 2 3 4

2 2 3 3 1 4 2 2 2 4 4

4 4 2 4 3 3 3 4 3 5 5

2 2 3 4 2 4 2 2 1 3 3

4 2 3 4 2 3 1 2 4 4 4

4 2 3 4 3 3 2 4 2 3 4

2 4 4 3 2 4 1 2 1 4 4

3 2 3 2 3 4 2 3 2 2 3

2 2 3 4 2 4 2 3 2 4 3

2 3 4 4 2 3 2 2 1 3 4

3 3 3 4 3 3 1 4 2 4 5

2 3 4 1 3 3 2 2 2 1 2

3 3 4 3 1 3 2 1 2 4 4

3 3 4 3 1 4 2 1 2 4 4


(6)

6

4 3 2 2 1 3 1 1 1 2 4

1 4 3 2 2 4 2 2 1 3 3

3 3 3 4 2 3 2 2 4 4 4

3 3 3 4 1 4 2 2 2 4 4

2 2 4 4 1 2 1 3 2 4 4

3 4 3 4 1 3 2 3 3 4 4

3 3 4 4 1 3 2 2 3 4 4

3 4 3 4 1 3 2 2 3 4 4

3 3 4 3 1 3 2 1 3 4 4

2 2 2 2 1 3 2 2 2 3 2

4 2 3 4 1 4 1 1 1 5 4

3 4 3 4 1 3 1 1 2 4 4

2 3 3 4 1 3 2 1 2 2 3

2 3 3 4 1 3 2 1 1 3 4

3 3 4 2 1 3 2 1 1 3 3

3 4 4 3 1 4 1 1 2 4 4

3 3 4 4 1 3 2 1 1 3 4

3 3 4 3 1 3 1 1 2 4 4

3 3 4 3 1 4 1 1 2 4 3

1 3 3 3 2 3 2 2 1 4 4

3 2 2 3 2 3 1 3 3 2 2

2 2 3 4 1 3 1 1 1 3 3

3 3 4 4 3 4 1 1 1 4 3

1 3 4 4 2 4 1 3 1 4 4

4 4 3 4 1 3 1 1 1 5 5

2 4 2 4 2 5 1 1 1 4 5


(7)

7

2 2 4 4 2 3 2 2 2 3 4

4 3 2 2 1 3 1 1 2 2 2

4 2 2 2 2 4 1 3 3 2 2

2 2 3 4 3 3 1 3 1 4 4

2 3 4 4 1 4 2 1 3 4 4

2 2 3 3 1 4 2 2 2 4 4

2 2 3 3 1 4 2 2 2 4 4

2 2 3 3 1 4 2 2 2 4 4

2 2 3 4 2 4 1 2 2 4 3

2 2 3 4 3 3 2 3 2 4 3

2 2 3 4 3 3 2 3 2 4 3

3 4 2 4 4 4 1 3 1 3 4

3 2 3 1 3 2 3 3 2 3 1

3 3 3 3 2 4 3 3 2 3 3

4 4 2 4 2 3 1 2 1 3 4

4 2 2 4 3 3 2 3 2 3 4

Sei Rampah, Mei 2016 KEPALA,


(8)

8

LAMPIRAN 3

SUCCESIVE DETAIL

COL CATEGORY FREQ PROP CUM DENSITY Z SCALE

1 1 4 0.044 0.044 0.093 -1.707 1.000

2 44 0.484 0.527 0.398 0.069 2.485

3 32 0.352 0.879 0.201 1.171 3.676

4 11 0.121 1.000 0.000 4.779

2 2 42 0.462 0.462 0.397 -0.097 1.000

3 33 0.363 0.824 0.259 0.931 2.242

4 16 0.176 1.000 0.000 3.331

3 1 2 0.022 0.022 0.052 -2.015 1.000

2 21 0.231 0.253 0.320 -0.666 2.228

3 46 0.505 0.758 0.312 0.701 3.401

4 22 0.242 1.000 0.000 4.677

4 1 2 0.022 0.022 0.052 -2.015 1.000

2 14 0.154 0.176 0.259 -0.931 2.046

3 24 0.264 0.440 0.394 -0.152 2.871

4 51 0.560 1.000 0.000 4.090

5 1 43 0.473 0.473 0.398 -0.069 1.000

2 23 0.253 0.725 0.334 0.599 2.097

3 23 0.253 0.978 0.052 2.015 2.954

4 2 0.022 1.000 0.000 4.228

6 1 1 0.011 0.011 0.029 -2.291 1.000

2 9 0.099 0.110 0.188 -1.227 2.026

3 51 0.560 0.670 0.362 0.441 3.322

4 29 0.319 0.989 0.029 2.291 4.678


(9)

9

2 51 0.560 0.956 0.093 1.707 2.495

3 4 0.044 1.000 0.000 8.161 4.090

8 1 31 0.341 0.341 0.367 -0.411 1.000

2 37 0.407 0.747 0.320 0.666 2.192

3 20 0.220 0.967 0.074 1.839 3.196

4 3 0.033 1.000 0.000 4.308

9 1 26 0.286 0.286 0.340 -0.566 1.000

2 47 0.516 0.802 0.278 0.849 2.309

3 15 0.165 0.967 0.074 1.839 3.431

4 3 0.033 1.000 0.000 4.421

10 1 1 0.011 0.011 0.029 -2.291 1.000

2 13 0.143 0.154 0.237 -1.020 2.176

3 25 0.275 0.429 0.393 -0.180 3.067

4 48 0.527 0.956 0.093 1.707 4.201

11 1 2 0.022 0.022 0.052 -2.015 1.000

2 12 0.132 0.154 0.237 -1.020 1.986

3 21 0.231 0.385 0.382 -0.293 2.758


(10)

10

LAMPIRAN 4

SUCCESIVE INTERVAL

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

4.779 3.331 2.228 4.090 2.097 3.322 1.000 2.192 1.000 3.067 3.808

4.779 1.000 2.228 4.090 2.954 3.322 2.495 3.196 2.309 3.067 3.808

2.485 2.242 3.401 4.090 2.097 3.322 2.495 2.192 2.309 3.067 2.758

2.485 1.000 2.228 4.090 2.954 3.322 1.000 2.192 1.000 3.067 5.201

2.485 1.000 3.401 2.871 2.954 4.678 1.000 2.192 1.000 4.201 3.808

2.485 1.000 2.228 4.090 2.954 3.322 2.495 1.000 2.309 3.067 3.808

2.485 1.000 3.401 4.090 2.097 3.322 1.000 2.192 1.000 3.067 2.758

3.676 1.000 3.401 4.090 2.097 3.322 2.495 2.192 2.309 4.201 2.758

2.485 1.000 4.677 4.090 2.954 2.026 2.495 2.192 2.309 3.067 3.808

3.676 1.000 2.228 4.090 2.954 2.026 4.090 3.196 2.309 4.201 2.758

3.676 3.331 3.401 4.090 1.000 3.322 2.495 2.192 3.431 4.201 3.808

2.485 1.000 3.401 2.871 2.097 3.322 2.495 3.196 3.431 2.176 1.986

2.485 1.000 2.228 2.871 2.097 3.322 2.495 3.196 2.309 4.201 2.758

2.485 1.000 2.228 2.046 2.954 3.322 2.495 2.192 2.309 2.176 2.758

2.485 1.000 2.228 2.046 2.097 2.026 2.495 2.192 2.309 2.176 1.986

3.676 2.242 2.228 2.871 2.954 4.678 1.000 2.192 2.309 2.176 2.758

3.676 2.242 3.401 4.090 1.000 4.678 2.495 2.192 3.431 4.201 3.808

2.485 1.000 3.401 2.871 1.000 3.322 1.000 2.192 2.309 4.201 3.808

2.485 1.000 3.401 2.871 1.000 3.322 1.000 1.000 2.309 4.201 3.808

2.485 1.000 2.228 4.090 1.000 3.322 1.000 2.192 1.000 4.201 5.201

2.485 1.000 3.401 2.871 2.954 3.322 2.495 2.192 1.000 5.749 5.201

3.676 2.242 3.401 2.871 1.000 4.678 2.495 1.000 3.431 4.201 3.808

3.676 3.331 3.401 4.090 1.000 3.322 2.495 3.196 3.431 4.201 3.808


(11)

11

3.676 2.242 4.677 4.090 1.000 3.322 2.495 1.000 4.421 4.201 3.808

3.676 2.242 3.401 4.090 2.954 3.322 1.000 2.192 1.000 3.067 3.808

2.485 1.000 4.677 4.090 1.000 4.678 1.000 3.196 2.309 4.201 3.808

2.485 1.000 2.228 2.871 1.000 4.678 1.000 1.000 2.309 3.067 3.808

4.779 3.331 3.401 4.090 1.000 4.678 2.495 1.000 2.309 4.201 3.808

2.485 3.331 3.401 4.090 1.000 3.322 1.000 1.000 2.309 3.067 3.808

2.485 1.000 3.401 2.871 1.000 4.678 2.495 2.192 2.309 4.201 3.808

4.779 3.331 2.228 4.090 2.954 3.322 4.090 4.308 3.431 5.749 5.201

2.485 1.000 3.401 4.090 2.097 4.678 2.495 2.192 1.000 3.067 2.758

4.779 1.000 3.401 4.090 2.097 3.322 1.000 2.192 4.421 4.201 3.808

4.779 1.000 3.401 4.090 2.954 3.322 2.495 4.308 2.309 3.067 3.808

2.485 3.331 4.677 2.871 2.097 4.678 1.000 2.192 1.000 4.201 3.808

3.676 1.000 3.401 2.046 2.954 4.678 2.495 3.196 2.309 2.176 2.758

2.485 1.000 3.401 4.090 2.097 4.678 2.495 3.196 2.309 4.201 2.758

2.485 2.242 4.677 4.090 2.097 3.322 2.495 2.192 1.000 3.067 3.808

3.676 2.242 3.401 4.090 2.954 3.322 1.000 4.308 2.309 4.201 5.201

2.485 2.242 4.677 1.000 2.954 3.322 2.495 2.192 2.309 1.000 1.986

3.676 2.242 4.677 2.871 1.000 3.322 2.495 1.000 2.309 4.201 3.808

3.676 2.242 4.677 2.871 1.000 4.678 2.495 1.000 2.309 4.201 3.808

2.485 2.242 2.228 2.046 2.954 2.026 1.000 1.000 2.309 2.176 1.986


(12)

12

1.000 3.331 3.401 2.046 2.097 4.678 2.495 2.192 1.000 3.067 2.758

3.676 2.242 3.401 4.090 2.097 3.322 2.495 2.192 4.421 4.201 3.808

3.676 2.242 3.401 4.090 1.000 4.678 2.495 2.192 2.309 4.201 3.808

2.485 1.000 4.677 4.090 1.000 2.026 1.000 3.196 2.309 4.201 3.808

3.676 3.331 3.401 4.090 1.000 3.322 2.495 3.196 3.431 4.201 3.808

3.676 2.242 4.677 4.090 1.000 3.322 2.495 2.192 3.431 4.201 3.808

3.676 3.331 3.401 4.090 1.000 3.322 2.495 2.192 3.431 4.201 3.808

3.676 2.242 4.677 2.871 1.000 3.322 2.495 1.000 3.431 4.201 3.808

2.485 1.000 2.228 2.046 1.000 3.322 2.495 2.192 2.309 3.067 1.986

4.779 1.000 3.401 4.090 1.000 4.678 1.000 1.000 1.000 5.749 3.808

3.676 3.331 3.401 4.090 1.000 3.322 1.000 1.000 2.309 4.201 3.808

2.485 2.242 3.401 4.090 1.000 3.322 2.495 1.000 2.309 2.176 2.758

2.485 2.242 3.401 4.090 1.000 3.322 2.495 1.000 1.000 3.067 3.808

3.676 2.242 4.677 2.046 1.000 3.322 2.495 1.000 1.000 3.067 2.758

3.676 3.331 4.677 2.871 1.000 4.678 1.000 1.000 2.309 4.201 3.808

3.676 2.242 4.677 4.090 1.000 3.322 2.495 1.000 1.000 3.067 3.808

3.676 2.242 4.677 2.871 1.000 3.322 1.000 1.000 2.309 4.201 3.808

3.676 2.242 4.677 2.871 1.000 4.678 1.000 1.000 2.309 4.201 2.758

1.000 2.242 3.401 2.871 2.097 3.322 2.495 2.192 1.000 4.201 3.808

3.676 1.000 2.228 2.871 2.097 3.322 1.000 3.196 3.431 2.176 1.986

2.485 1.000 3.401 4.090 1.000 3.322 1.000 1.000 1.000 3.067 2.758

3.676 2.242 4.677 4.090 2.954 4.678 1.000 1.000 1.000 4.201 2.758

1.000 2.242 4.677 4.090 2.097 4.678 1.000 3.196 1.000 4.201 3.808

4.779 3.331 3.401 4.090 1.000 3.322 1.000 1.000 1.000 5.749 5.201

2.485 3.331 2.228 4.090 2.097 6.266 1.000 1.000 1.000 4.201 5.201

2.485 2.242 4.677 2.871 2.954 3.322 2.495 2.192 2.309 4.201 5.201


(13)

13

4.779 2.242 2.228 2.046 1.000 3.322 1.000 1.000 2.309 2.176 1.986

4.779 1.000 2.228 2.046 2.097 4.678 1.000 3.196 3.431 2.176 1.986

2.485 1.000 3.401 4.090 2.954 3.322 1.000 3.196 1.000 4.201 3.808

2.485 2.242 4.677 4.090 1.000 4.678 2.495 1.000 3.431 4.201 3.808

2.485 1.000 3.401 2.871 1.000 4.678 2.495 2.192 2.309 4.201 3.808

2.485 1.000 3.401 2.871 1.000 4.678 2.495 2.192 2.309 4.201 3.808

2.485 1.000 3.401 2.871 1.000 4.678 2.495 2.192 2.309 4.201 3.808

2.485 1.000 3.401 4.090 2.097 4.678 1.000 2.192 2.309 4.201 2.758

2.485 1.000 3.401 4.090 2.954 3.322 2.495 3.196 2.309 4.201 2.758

2.485 1.000 3.401 4.090 2.954 3.322 2.495 3.196 2.309 4.201 2.758

3.676 3.331 2.228 4.090 4.228 4.678 1.000 3.196 1.000 3.067 3.808

3.676 1.000 3.401 1.000 2.954 2.026 4.090 3.196 2.309 3.067 1.000


(14)

14

LAMPIRAN 5

HASIL OUTPUT SPSS

HASIL PERHITUNGAN UJI VALIDITAS 1

Correlations

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 scoretotal

x1 Pearson Correlation 1 .277** -.026 .139 -.102 .086 -.011 .013 .261* .061 .154 .400**

Sig. (2-tailed) .008 .806 .189 .338 .419 .919 .903 .012 .568 .146 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

x2 Pearson Correlation .277** 1 .121 .152 -.176 .125 -.030 -.238* .069 .155 .305** .377**

Sig. (2-tailed) .008 .253 .151 .095 .239 .778 .023 .515 .142 .003 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

x3 Pearson Correlation -.026 .121 1 .235* -.241* .232* .077 -.127 .055 .272** .269** .394**

Sig. (2-tailed) .806 .253 .025 .021 .027 .468 .231 .606 .009 .010 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

x4 Pearson Correlation .139 .152 .235* 1 -.033 .134 -.057 .142 .050 .472** .586** .652**

Sig. (2-tailed) .189 .151 .025 .754 .206 .590 .178 .641 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

x5 Pearson Correlation -.102 -.176 -.241* -.033 1 -.211* .119 .511** -.129 -.192 -.117 .127

Sig. (2-tailed) .338 .095 .021 .754 .045 .262 .000 .224 .069 .268 .229


(15)

15

x6 Pearson Correlation .086 .125 .232* .134 -.211* 1 -.201 -.096 -.105 .157 .313** .301**

Sig. (2-tailed) .419 .239 .027 .206 .045 .056 .366 .324 .138 .003 .004

N 91 91 91 91 91 91 91 91 91 91 91 91

x7 Pearson Correlation -.011 -.030 .077 -.057 .119 -.201 1 .265* .314** .081 -.132 .258*

Sig. (2-tailed) .919 .778 .468 .590 .262 .056 .011 .002 .448 .212 .014

N 91 91 91 91 91 91 91 91 91 91 91 91

x8 Pearson Correlation .013 -.238* -.127 .142 .511** -.096 .265* 1 .152 .020 -.035 .371**

Sig. (2-tailed) .903 .023 .231 .178 .000 .366 .011 .151 .851 .745 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

x9 Pearson Correlation .261* .069 .055 .050 -.129 -.105 .314** .152 1 .091 -.054 .348**

Sig. (2-tailed) .012 .515 .606 .641 .224 .324 .002 .151 .388 .614 .001

N 91 91 91 91 91 91 91 91 91 91 91 91

x10 Pearson Correlation .061 .155 .272** .472** -.192 .157 .081 .020 .091 1 .576** .610**

Sig. (2-tailed) .568 .142 .009 .000 .069 .138 .448 .851 .388 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91 91

x11 Pearson Correlation .154 .305** .269** .586** -.117 .313** -.132 -.035 -.054 .576** 1 .667**

Sig. (2-tailed) .146 .003 .010 .000 .268 .003 .212 .745 .614 .000 .000


(16)

16

HASIL PERHITUNGAN UJI VALIDITAS 2

Correlations

x1 x2 x3 x4 x6 x7 x8 x9 x10 x11 scoretotal

x1 Pearson Correlation 1 .277** -.026 .139 .086 -.011 .013 .261* .061 .154 .425**

Sig. (2-tailed) .008 .806 .189 .419 .919 .903 .012 .568 .146 .000

N 91 91 91 91 91 91 91 91 91 91 91

x2 Pearson Correlation .277** 1 .121 .152 .125 -.030 -.238* .069 .155 .305** .421**

Sig. (2-tailed) .008 .253 .151 .239 .778 .023 .515 .142 .003 .000

N 91 91 91 91 91 91 91 91 91 91 91

x3 Pearson Correlation -.026 .121 1 .235* .232* .077 -.127 .055 .272** .269** .455**

Sig. (2-tailed) .806 .253 .025 .027 .468 .231 .606 .009 .010 .000

N 91 91 91 91 91 91 91 91 91 91 91

x4 Pearson Correlation .139 .152 .235* 1 .134 -.057 .142 .050 .472** .586** .661**

Sig. (2-tailed) .189 .151 .025 .206 .590 .178 .641 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

x6 Pearson Correlation .086 .125 .232* .134 1 -.201 -.096 -.105 .157 .313** .354**

Sig. (2-tailed) .419 .239 .027 .206 .056 .366 .324 .138 .003 .001

N 91 91 91 91 91 91 91 91 91 91 91

x7 Pearson Correlation -.011 -.030 .077 -.057 -.201 1 .265* .314** .081 -.132 .229*

Sig. (2-tailed) .919 .778 .468 .590 .056 .011 .002 .448 .212 .029


(17)

17

x8 Pearson Correlation .013 -.238* -.127 .142 -.096 .265* 1 .152 .020 -.035 .244*

Sig. (2-tailed) .903 .023 .231 .178 .366 .011 .151 .851 .745 .020

N 91 91 91 91 91 91 91 91 91 91 91

x9 Pearson Correlation .261* .069 .055 .050 -.105 .314** .152 1 .091 -.054 .380**

Sig. (2-tailed) .012 .515 .606 .641 .324 .002 .151 .388 .614 .000

N 91 91 91 91 91 91 91 91 91 91 91

x10 Pearson Correlation .061 .155 .272** .472** .157 .081 .020 .091 1 .576** .658**

Sig. (2-tailed) .568 .142 .009 .000 .138 .448 .851 .388 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

x11 Pearson Correlation .154 .305** .269** .586** .313** -.132 -.035 -.054 .576** 1 .697**

Sig. (2-tailed) .146 .003 .010 .000 .003 .212 .745 .614 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

scoretotal Pearson Correlation .425** .421** .455** .661** .354** .229* .244* .380** .658** .697** 1 Sig. (2-tailed) .000 .000 .000 .000 .001 .029 .020 .000 .000 .000

N 91 91 91 91 91 91 91 91 91 91 91

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).


(18)

18

HASIL PERHITUNGAN RELIABILITAS

Case Processing Summary

N %

Cases Valid 91 100.0

Excludeda 0 .0

Total 91 100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha

Cronbach Alpha Based on Standardized

N of Items

.691 .691 10

Item-Total Statistics

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Item-Total Correlation

Cronbach's Alpha if Item

Deleted

x1 24.78 11.040 .425 .575

x2 24.62 11.084 .421 .575

x3 24.36 10.900 .455 .566

x4 23.97 9.566 .661 .502

x6 24.11 11.521 .354 .586

x7 25.68 12.175 .229 .602

x8 25.38 12.017 .244 .631

x9 25.38 11.284 .380 .587

x10 23.88 9.552 .658 .503


(19)

(20)

Correlation Matrix

x1 x2 x3 x4 x6 x7 x8 x9 x10 x11

Correlation x1 1.000 .260 -.013 .155 .075 -.004 -.008 .259 .086 .148

x2 .260 1.000 .133 .151 .126 -.026 -.252 .056 .147 .297

x3 -.013 .133 1.000 .205 .212 .069 -.130 .053 .234 .217

x4 .155 .151 .205 1.000 .094 -.055 .147 .029 .410 .515

x6 .075 .126 .212 .094 1.000 -.204 -.099 -.105 .157 .271

x7 -.004 -.026 .069 -.055 -.204 1.000 .272 .324 .072 -.143

x8 -.008 -.252 -.130 .147 -.099 .272 1.000 .159 .017 -.014

x9 .259 .056 .053 .029 -.105 .324 .159 1.000 .076 -.078

x10 .086 .147 .234 .410 .157 .072 .017 .076 1.000 .569

x11 .148 .297 .217 .515 .271 -.143 -.014 -.078 .569 1.000

Sig. (1-tailed) x1 .006 .452 .071 .241 .484 .471 .007 .209 .081

x2 .006 .104 .077 .117 .402 .008 .299 .082 .002

x3 .452 .104 .026 .022 .257 .109 .307 .013 .019

x4 .071 .077 .026 .187 .301 .082 .394 .000 .000

x6 .241 .117 .022 .187 .026 .175 .162 .068 .005

x7 .484 .402 .257 .301 .026 .005 .001 .250 .088

x8 .471 .008 .109 .082 .175 .005 .066 .435 .447

x9 .007 .299 .307 .394 .162 .001 .066 .236 .231

x10 .209 .082 .013 .000 .068 .250 .435 .236 .000


(21)

Anti-image Matrices

x1 x2 x3 x4 x6 x7 x8 x9 x10 x11

Anti-image Covariance x1 .842 -.171 .081 -.070 -.054 .040 .003 -.224 .020 -.033

x2 -.171 .790 -.027 -.022 -.025 -.064 .216 -.037 .038 -.140

x3 .081 -.027 .849 -.107 -.161 -.111 .141 -.056 -.061 -.028

x4 -.070 -.022 -.107 .666 .060 .068 -.150 -.006 -.102 -.191

x6 -.054 -.025 -.161 .060 .856 .135 -.006 .049 -.025 -.102

x7 .040 -.064 -.111 .068 .135 .768 -.209 -.194 -.107 .084

x8 .003 .216 .141 -.150 -.006 -.209 .789 -.080 .039 -.034

x9 -.224 -.037 -.056 -.006 .049 -.194 -.080 .800 -.066 .079

x10 .020 .038 -.061 -.102 -.025 -.107 .039 -.066 .620 -.254

x11 -.033 -.140 -.028 -.191 -.102 .084 -.034 .079 -.254 .499

Anti-image Correlation x1 .570a -.209 .096 -.093 -.064 .049 .004 -.273 .027 -.051

x2 -.209 .622a -.033 -.031 -.030 -.083 .273 -.047 .054 -.223

x3 .096 -.033 .644a -.142 -.189 -.137 .172 -.068 -.084 -.043

x4 -.093 -.031 -.142 .714a .080 .095 -.207 -.008 -.160 -.331

x6 -.064 -.030 -.189 .080 .694a .167 -.007 .060 -.035 -.156


(22)

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .630

Bartlett's Test of Sphericity Approx. Chi-Square 142.388

df 45

Sig. .000

Communalities

Initial Extraction

x1 1.000 .713

x2 1.000 .586

x3 1.000 .735

x4 1.000 .644

x6 1.000 .531

x7 1.000 .692

x8 1.000 .681

x9 1.000 .650

x10 1.000 .618


(23)

Total Variance Explained

Compon ent

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.422 24.225 24.225 2.422 24.225 24.225 2.110 21.105 21.105

2 1.653 16.525 40.750 1.653 16.525 40.750 1.567 15.669 36.773

3 1.272 12.722 53.472 1.272 12.722 53.472 1.384 13.838 50.611

4 1.055 10.546 64.018 1.055 10.546 64.018 1.341 13.407 64.018

5 .882 8.816 72.834

6 .704 7.040 79.874

7 .659 6.592 86.466

8 .558 5.582 92.048

9 .451 4.515 96.563

10 .344 3.437 100.000


(24)

(25)

Component Matrixa

Component

1 2 3 4

x1 .316 .259 .605 -.424

x2 .481 -.086 .589 .003

x3 .454 .006 -.011 .727

x4 .680 .205 -.288 -.238

x6 .436 -.347 .004 .143

x7 -.141 .722 .018 .388

x8 -.112 .605 -.472 -.281

x9 .023 .695 .393 .107

x10 .713 .210 -.247 .069

x11 .831 -.033 -.191 -.152

Extraction Method: Principal Component Analysis.


(26)

Rotated Component Matrixa Component

1 2 3 4

x1 .139 .112 .806 -.178

x2 .127 -.056 .666 .352

x3 .256 .237 -.117 .774

x4 .795 -.008 .091 -.065

x6 .261 -.305 .075 .405

x7 -.032 .822 -.117 .029

x8 .305 .398 -.294 -.586

x9 -.013 .718 .363 -.047

x10 .749 .115 .026 .209

x11 .809 -.196 .176 .166

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 9 iterations.

Component Transformation Matrix

Component 1 2 3 4

1 .847 -.102 .346 .390


(27)

3 -.441 .118 .861 .225

4 -.186 .384 -.364 .828

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.


(28)

LAMPIRAN 6

PERHITUNGAN KMO DAN MSA

Untuk menghitung KMO dan MSA maka diperlukan matriks korelasi sederhana dan matriks korelasi parsial yang semua entrinya telah dikuadratkan. Berikut ini akan disajikan matriks korelasi sederhana dan matriks korelasi parsial yang semua entrinya telah dikuadratkan.

MATRIKS KORELASI SEDERHANA rij

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 1.000 0.260 -0.013 0.155 0.075 -0.004 -0.008 0.259 0.086 0.148

X2 0.260 1.000 0.133 0.151 0.126 -0.026 -0.252 0.056 0.147 0.297

X3 -0.013 0.133 1.000 0.205 0.212 0.069 -0.130 0.053 0.234 0.217

X4 0.155 0.151 0.205 1.000 0.094 -0.055 0.147 0.029 0.410 0.515

Σ = X5 0.075 0.126 0.212 0.094 1.000 -0.204 -0.099 -0.105 0.157 0.271

X6 -0.004 -0.026 0.069 -0.055 -0.204 1.000 0.272 0.324 0.072 -0.143

X7 -0.008 -0.252 -0.130 0.147 -0.099 0.272 1.000 0.159 0.017 -0.014

X8 0.259 0.056 0.053 0.029 -0.105 0.324 0.159 1.000 0.076 -0.078

X9 0.086 0.147 0.234 0.410 0.157 0.072 0.017 0.076 1.000 0.569


(29)

LANJUTAN LAMPIRAN 6

MATRIKS KORELASI PARSIAL

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 -.257 0.113 -0.124 -0.075 0.061 0.005 -0.333 0.038 -0.079

X2 -0.257 -0.040 -0.043 -0.037 -0.106 0.346 -0.059 0.077 -0.355

X3 0.113 -0.040 -0.189 -0.222 -0.170 0.210 -0.083 -0.115 -0.066

X4 -0.124 -0.043 -0.189 0.106 0.133 -0.285 -0.011 -0.248 -0.575

X5 -0.075 -0.037 -0.222 0.106 0.206 -0.009 0.072 -0.047 -0.239

A = (aij) = X6 0.061 -0.106 -0.170 0.133 0.206 -0.345 -0.316 -0.225 0.220

X7 0.005 0.346 0.210 -0.285 -0.009 -0.345 -0.128 0.079 -0.087

X8 -0.333 -0.059 -0.083 -0.011 0.072 -0.316 -0.128 -0.133 0.197

X9 0.038 0.077 -0.115 -0.248 -0.047 -0.225 0.079 -0.133 -0.822


(30)

LANJUTAN LAMPIRAN 6

Kuadrat Matriks Korelasi Sederhana

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Jumlah

X1 0.0676 0.00017 0.02403 0.00563 0.00002 0.00006 0.06708 0.00740 0.02190 0.19389 X2 0.0676 0.01769 0.02280 0.01588 0.00068 0.06350 0.00314 0.02161 0.08821 0.30111

X3 0.0002 0.0177 0.04203 0.04494 0.00476 0.01690 0.00281 0.05476 0.04709 0.23119

X4 0.0240 0.0228 0.04203 0.00884 0.00303 0.02161 0.00084 0.16810 0.26523 0.55648

Σ = ( 2) = X

5 0.0056 0.0159 0.04494 0.00884 0.04162 0.00980 0.01103 0.02465 0.07344 0.23582 X6 0.0000 0.0007 0.00476 0.00303 0.04162 0.07398 0.10498 0.00518 0.02045 0.2547

X7 0.0001 0.0635 0.01690 0.02161 0.00980 0.07398 0.02528 0.00029 0.00020 0.21166

X8 0.0671 0.0031 0.00281 0.00084 0.01103 0.10498 0.02528 0.00578 0.00608 0.227 X9 0.0074 0.0216 0.05476 0.16810 0.02465 0.00518 0.00029 0.00578 0.32376 0.61152

X10 0.0219 0.0882 0.04709 0.26523 0.07344 0.02045 0.00020 0.00608 0.32376 0.84635


(31)

LANJUTAN LAMPIRAN 6

Kuadrat Matriks Korelasi Parsial

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Jumlah

X1 0.0660 0.01277 0.01538 0.00563 0.00372 0.00003 0.11089 0.00144 0.00624 0.2221

X2 0.0660 0.00160 0.00185 0.00137 0.01124 0.11972 0.00348 0.00593 0.12603 0.33722

X3 0.0128 0.0016 0.03572 0.04928 0.02890 0.04410 0.00689 0.01323 0.00436 0.19688

X4 0.0154 0.0018 0.03572 0.01124 0.01769 0.08123 0.00012 0.06150 0.33063 0.55533

D = ( 2) = X5 0.0056 0.0014 0.04928 0.01124 0.04244 0.00008 0.00518 0.00221 0.05712 0.17455 X6 0.0037 0.0112 0.02890 0.01769 0.04244 0.11903 0.09986 0.05063 0.04840 0.42185 X7 0.0000 0.1197 0.04410 0.08123 0.00008 0.11903 0.01638 0.00624 0.00757 0.39433 X8 0.1109 0.0035 0.00689 0.00012 0.00518 0.09986 0.01638 0.01769 0.03881 0.29933

X9 0.0014 0.0059 0.01323 0.06150 0.00221 0.05063 0.00624 0.01769 0.67568 0.83448

X10 0.0062 0.1260 0.00436 0.33063 0.05712 0.04840 0.00757 0.03881 0.67568 1.29477


(32)

31

LANJUTAN LAMPIRAN 6

1. KMO= ∑ ∑

2 ≠1 =1

∑ ∑ 2

≠1

=1 +∑=1∑ ≠1 2

KMO = 3,66972

3,66972+4,73084 = 0,630

2. MSA = ∑ ∑ 2 ≠1 =1

∑ 2

=1 +∑=1 2

1=

0,19389

0,19389+0,2221 = 0,570 2 =

0,30111

0,30111+0,33722 = 0,622 3 =

0,23119

0,23119+0,19688 = 0,644 4=

0,55648

0,55648+0,55533 = 0,714 5=

0,23582

0,23582+0,17455 = 0,694 6=

0,2547

0,2547+0,42185 = 0,514 7=

0,21166

0,21166+0,39433 = 0,574 8 =

0,227

0,227+1,29933 = 0,556 9=

0,61152

0,61152+0,83448 = 0,686 10=

0,84635


(33)

32

UJI BARLETT PENDEKATAN STATISTIK CHI SQUARE

Untuk menguji apakah matriks korelasi sederhana bukan merupakan suatu matriks idensitas, maka digunakan uji Barlett dengan pendekatan statistik chi square. Berikut ini langkah-langkah pengujiannya:

1. Hipotesis

Ho : Matriks korelasi sederhana merupakan matriks idensitas H1 : Matriks korelasi sederhana bukan merupakan matriks idensitas 2. Statistik Uji

2 = − −1 −(2 +5)

6 ∑

3. Taraf nyata α dan nilaiχ2 dari tabel diperoleh: α = 5% = 0,05

dengan df = p p−1

2 =

10 10−1

2 = 45

χ2

tabel = 61,66

4. Kriteria pengujian:

H0 ditolak apabila χ2hitung ≥χ2tabel

H0 diterima apabila χ2hitung < χ2tabel

5. Perhitungan 2: Det (R) = 0,190


(34)

33

PERHITUNGAN KOMUNALITAS

Variabel Ii1 li2 li3 li4 li12 li22 li32 li42 hi

V1 0.139 0.122 0.806 -0.178 0.019321 0.014884 0.649636 0.031684 0.715525

V2 0.127 -0.056 0.666 0.352 0.016129 0.003136 0.443556 0.123904 0.586725

V3 0.256 0.237 -0.117 0.774 0.065536 0.056169 0.013689 0.599076 0.73447

V4 0.796 -0.008 0.091 -0.065 0.633616 0.000064 0.008281 0.004225 0.646186

V6 0.261 -0.305 0.075 0.405 0.068121 0.093025 0.005625 0.164025 0.530796

V7 -0.032 0.822 -0.117 0.029 0.001024 0.675684 0.013689 0.000841 0.691238

V8 0.305 0.398 -0.294 -0.586 0.093025 0.158404 0.086436 0.343396 0.681261

V9 -0.013 0.718 0.363 -0.047 0.000169 0.515524 0.131769 0.002209 0.649671

V10 0.749 0.115 0.026 0.209 0.561001 0.013225 0.000676 0.043681 0.618583


(35)

50

DAFTAR PUSTAKA

Anderson, T. W. 1984. An Introdaction to Multivariate Statistical Analyisis, New York: John Wiley &Sons,Inc.

Anonim, Perkawinan Usia Muda [serial online], Diakses 12 April 2013,

www.skripsikuliah.co.id .../perkawinan-usia-muda-faktor-faktor.html Azwar, Saifuddin. 1996. Reliabilitas dan Validitas.Yogyakarta. Pustaka Pelajar. Cochran, William G. 1991. Teknik Penarikan Sampling. Terjemahan Rudiansyah,

Erwin R. Osman: Jakarta UI-Press.

Dillon, R. W. Dan Goldstein, M.1984. multivariate Analysis and Aplication New York: John Wiley & Sains, Inc,

Goode, Willian. J. 1995. Sosiologi Keluarga. Terj. Lailahanoum, Jakarta: Bumi aksara.

Hurlock, E. B. (1999). Psikologi Perkembangan: Suatu Pendekatan Sepanjang Rentang Kehidupan (edisi ke-5). Jakarta: Penerbit Erlangga.

Johnson, R. A and D. W. Wichern. (1982). Applied Multivariate Statistical

Analysis, Prentice-Hall, Inc. New Jersey.

Monks, F. J. Knoers, A. M. P., Haditono, S. R. (2001). Psikologi Perkembangan Pengantar Dalam Berbagai Bagiannya. Yogyakarta: Gajah Mada University Press

Pedgett, D. K. (1999), Qualitative Methods in Social Work Research Challanges

And Rewards. London: Sage Publication.

Papalia, D. E, Olds, S. W., Fieldman R. D. (2003). Human Development (9th ed), New York: Mc Graw Hill Inc,

Pasal 6 Ayat 2 UU No. 1 Tahun 1974.Standarisasi Umur Dalam Suatu

Pernikan. Jakarta. Gramedia Pustaka.


(36)

32

BAB 3 PEMBAHASAN

3.1Prosedur Penelitian

Pengambilan data dilakukan dengan cara langsung menyebar kuesioner yaitu berupa pertanyaan-pertanyaan kepada responden penelitian. Responden penelitian ini adalah remaja baik laki-laki maupun wanita yang menikah di usia muda, namun dengan batasan hanya pada responden yang baru menikah selama periode 5 tahun ini. Waktu pelaksanaan pengambilan dan pengumpulan data dimulai dari pertengan Maret 2016 sampai dengan April 2016. Jumlah penduduk yang melakukan pernikahan dini di kecamatan sei rampah kabupaten serdang bedagai tercatat pada tahun 2011-2016 sebnyak 1043 orang.

Tabel 3.1 Populasi Penelitian

No Nama Desa Jumlah

1 Tanah Raja 35

2 Pematang Pelintahan 40

3 Pematang Ganjang 50

4 Rambung Estate 50

5 Rambung Sialang Hilir 77 6 Rambung Sialang Hulu 30 7 Rambung Sialang Tengah 61

8 Silau Rakyat 135

9 Simpang Empat 66

10 Sei Rejo 46

11 Sei Parit 65

12 Sinar Kasih 79

13 Firdaus 103

14 Firdaus Estate 60

15 Sei Rampah 40

16 Pergulaan 49

17 Cempedak Lobang 57

Jumlah 1043

3.2Sampel Penelitian

Sampel merupakan sebagian atau wakil dari populasi yang diteliti. Untuk mengetahui jumlah sampel minimum yang akan diambil dalam penelitian ini,


(37)

33

Penelitimenggunakan rumus Slovinyaitu : =

1 + 2

Maka :

= 1043

1 + 1043 0.1 2

= 1043 11,43 = 91,25 = 91

Dalam penelitian ini terdapat 17 desa yang terletak di kecamatan Sei Rampah Kabupaten serdang bedagai. Metode yang digunakan dalam pengambilan sampelnya adalah dengan Proportionale Stratified random

sampling yaitu pengambilan sampel dilakukan secara acak dengan

memperhatikan strata yang ada. Artinya setiap strata terwakili sesuai proporsinya. Rumusnya sebagai berikut:

=

Tabel 3.2 Populasi dan Penelitian tiap strata

No Nama Desa Jumlah Jumlah Sampel

(orang)

1 Tanah Raja 35 35

1043 91 = 3

2 Pematang Pelintahan 40 40

1043 91 = 3

3 Pematang Ganjang 50 50

1043 91 = 4

4 Rambung Estate 50 50

1043 91 = 4

5 Rambung Sialang Hilir 77 77

1043 91 = 7

6 Rambung Sialang Hulu 30 30

1043 91 = 3 61


(38)

34

11 Sei Parit 65 65

1043 91 = 6

12 Sinar Kasih 79 79

1043 91 = 7

13 Firdaus 103 103

1043 91 = 9

14 Firdaus Estate 60 60

1043 91 = 6

15 Sei Rampah 40 40

1043 91 = 3

16 Pergulaan 49 49

1043 91 = 4

17 Cempedak Lobang 57 57

1043 91 = 5

Jumlah 1043 91

3.3Uji Validitas

Hasil uji validitas kuesioner dari 11 variabel yang diukur kemudian dihitung dengan menggunakan software SPSS yang ditunjukkan pada tabel.

Tabel 3.3 Uji Validitas 1

No Variabel r-tabel r-hitung Keterangan

1 Variabel 1 0,206 0,400 Valid

2 Variabel 2 0,206 0,377 Valid

3 Variabel 3 0,206 0,394 Valid

4 Variabel 4 0,206 0,652 Valid

5 Variabel 5 0,206 0,127 Tidak Valid

6 Variabel 6 0,206 0,301 Valid

7 Variabel 7 0,206 0,258 Valid

8 Variabel 8 0,206 0,371 Valid

9 Variabel 9 0,206 0,348 Valid

10 Variabel 10 0,206 0,610 Valid

11 Variabel 11 0,206 0,667 Valid

Dari tabel 3.1 mempunyai korelasi person r hitung ≥ 0,206 maka butir pertanyaan tersebut adalah valid. Jika suatu butir pertanyaan tidak valid maka butir pertanyaan tersebut harus dibuang kemudian dilakukan uji sesuai prosedur sebelumnya dengan mengurangi butir pertanyaan yang tidak valid.

Karena terdapat 1 variabel yang tidak valid yaitu variabel 5 (Informasi Kesehatan Reproduksi), maka uji validitas harus dilakukan kembali dengan mengurangi 1 variabel yang tidak valid tersebut. Tabel 3.4 menunjukkan hasil uji validitas 2 (kedua).


(39)

35

Tabel 3.4 Uji Validitas 2

No Variabel r-tabel r-hitung Keterangan

1 Variabel 1 0,206 0,425 Valid

2 Variabel 2 0,206 0,421 Valid

3 Variabel 3 0,206 0,455 Valid

4 Variabel 4 0,206 0,661 Valid

5 Variabel 6 0,206 0,354 Valid

6 Variabel 7 0,206 0,229 Valid

7 Variabel 8 0,206 0,244 Valid

8 Variabel 9 0,206 0,380 Valid

9 Variabel 10 0,206 0,658 Valid

10 Variabel 11 0,206 0,697 Valid

Dari perhitungan pada tabel diatas dimana nilai r-hitung dibandingkan dengan nilai jumlah N sebanyak 91 responden dengan taraf signifikan 5% dimana nilai r-hitung lebih besar dari nilai r-tabel sehingga dapat disimpulkan bahwa 10 variabel pada tabel diatas dinyatakan valid.

Secara manual perhitungan korelasi Product Moment antara variabel X1

dengan skor total variabel lainnya (Y) dapat dilihat pada tabel berikut:

Tabel 3.5 Contoh Perhitungan Korelasi Product Moment

Nomor

Responden X1 Y X1Y X1

2

Y2

1 4 28 112 16 784

2 4 29 116 16 841

3 2 27 54 4 729

4 2 25 50 4 625

5 2 26 52 4 676

6 2 25 50 4 625

7 2 24 48 4 576

8 3 28 84 9 784

9 2 27 54 4 729

10 3 28 84 9 784

11 3 32 96 9 1024

12 2 25 50 4 625

13 2 26 52 4 676

14 2 22 44 4 484

15 2 20 40 4 400


(40)

36

1 =

∑ − (∑ 1.∑ ) { ∑ 12− (∑ 1)2}{ 2 ( )2}

1 =

91 6445 − (232 2487 )

91 644 − 232 2{91 691192487 2}

1 =

586495−576984

58604−53428 (6289829−6185169) 1 = 9511 (4780)(104660) 1 = 9511 500274800 1 = 9511 22366 ,824 1 = 0,425

Diperoleh nilai validitas 1dengan perhitungan manual adalah 0,425 sama

dengan output SPSS yakni 0,425. Selanjutnya untuk perhitungan lainnya akan dilakukan dengan software SPSS.

3.4Uji Reabilitas

Setelah dilakukan uji validitas dan dinyatakan valid dilanjutkan dengan uji reliabilitas. Suatu variabel dikatakan reliabel apabila setelah dilakukan uji reliabel diperoleh nilai Cronbach Alpha> 0,60 atau nilai Cronbach Alpha>0,80. Jika dihitung variansi itemnya akan diperoleh hasil sebagai berikut:

 Mencari nilai variansi dari masing masing variabel dengan rumus sebagai berikut:

=∑

2(∑ )2

1 =

53824−(232 )2 91

91 = 7107,98 7 =

22500−(150 )2 91

91 = 244,54

2 =

61009−(270 )2 91

91 = 663,06 8 =

31329−(177 )2 91

91 = 340,49

3 =

72900−(370 )2 91

91 = 792,30 9 =

31329−(177 )2 91


(41)

37

4 =

93636−(306 )2 91

91 = 1017,66 10 =

95896−(314 )2 91

91 = 1071.57

6 =

85849−(293 )2 91

91 = 933,03 11 =

103041−(321 )2 91

91 = 1119,88

∑ = 7107,98 + 663,06 + 792,30 + 1017,66 + 933,03 + 244,54 + 340,49 + 340,49 + 1071,57 + 1119,88 = 7107,98

 Mencari nilai variansi total ∑ = 69119−

(2487 )2 91

91 =

66632

91 = 732,22

 Mencari nilai Alpha =

−1 1−

∑�2

�2

= 10

10−1 1−

7107,98

732,22 = 1,111 0,622

= 0,691

Berikut adalah hasil perolehan data dari uji reliabilitas dengan SPSS

Tabel 3.6 Hasil Cronback Alpha Reliability Test Reliability Statistics

Cronbach's Alpha

Cronbach's Alpha Based on

Standardized Items N of Items

.691 .691 10

Berdasarkan hasill perhitungan di atas, nilai Cronbach Coeficien Alpha adalah 0,691 untuk uji reliabilitas atas daftar pilihan responden. Nilai tersebut


(42)

38

3.5Penskalan Data Ordinal Menjadi Data Interval

Berikut ini adalah hasil perhitungan Method Successive Interval untuk Variabel 1.

Tabel 3.7 Penskalaan Variabel 1

No. Variabel Kategori Score Jawaban Ordinal

Frekuensi Proporsi Proporsi

Kumulatif Z

Densitas {f(z)} Nilai hasil Penskala an 1

1.000 4.000 0,044 0,044 -1,707 0,093 1,000

2.000 44.000 0,484 0,527 0,069 0,398 2,485

3.000 33.000 0,352 0,879 1,171 0,201 3,695

4.000 10.000 0,121 1,000 0,000 4,826

Jumlah 91

Langkah-langkah Methods Successive Interval untuk variabel 1: 1. Menghitung Frekuensi skor jawaban skala ordinal.

2. Menghitung proporsi dan proporsi kumulatif untuk masing-masing skor jawaban.

3. Menentukan nilai Z untuk setiap nilai kategori, dengan asumsi bahwa proporsi kumulatif dianggap mengikuti distribusi normal baku. Nilai Z diperoleh dari Tabel Distribusi Normal Baku.

4. Menghitung nilai densitas dari nilai Z yang diperoleh dengan cara memasukkan nilai Z tersebut kedalam fungsi densitas normal baku sebagai berikut:

= 1 2�

−1 2

2

−1,701 = 1 2�

−1

2(−1,701) = 0,093

5. Menghitung Scala Value (SV) dengan rumus:

= −

1 =

0,000−0,093

0,044−0,000=−2,116

2 =

0,093−0,398


(43)

39

3 =

0,398−0,201

0,879−0,527= 0,560

4 =

0,201−0,000

1,000−0,879= 1,662

6. Menentukan Scala Value min sehingga + = 1

SV1 = -2,116 (SV terkecil)

Nilai 1 diperoleh dari: -2,116 + X = 1

X = 1 + 2,116 X = 3,116

-2,116 + 3,116 = 1 sehingga Y1 = 1

7. Mentransformasikan nilai skala dengan menggunakan rumus:

= +

1 = −2,116 + 3,116 = 1 2 = −0,631 + 3,116 = 2,485

3 = 0,560 + 3,116 = 3,676 4 = 1,662 + 3,116 = 4,779

Selanjutnya dengan melakukan cara yang sama, maka semua variabel akan ditransformasikan ke dalam data interval.

Tabel 3.8 Hasil Penskalaan Variabel

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 2 2,485 1,000 2,228 2,046 2,097 2,097 2,495 2,192 2,309 2,176 1,986 3 3,676 2,242 3,401 2,871 2,954 3,322 4,090 3,196 3,431 3,067 2,758 4 4,779 3,331 4,677 4,090 4,228 4,678 4,308 4,421 4,201 3,808


(44)

40

3.6Proses Analisi faktor I

Pada proses awal analisis faktor, dilakukan beberapa tahap sampai dengan diperoleh faktor-faktor baru sebagai dominan yang ingin diperoleh. Prose pertama tabulasi pada data serta melakukan pengolahan dengan software yang telah direfrensikan yaitu dengan program SPSS dengan mengambil versi SPSS 17.

Ada beberapa variabel yang memenuhi keputusan remaja menikah di usia muda. Dalam penelitian ini, faktor-faktor tersebut berjumlah 10 varieble yang telah valid.

Berdasarkan hasil perhitungan diperoleh nilai KMO and Barlett’s Test sebesar 0,630 dengan signifikan sebesar 0,000. Berdasarkan teori nilai KMO memang harus diatas 0,5 dan signifikan atau probabilitas dibawah 0,5 maka variabel layak dan dapat dianalisa lebih lanjut (Santoso, 2002).

Tabel 3.9KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .630 Bartlett's Test of

Sphericity

Approx. Chi-Square 142.388

Df 45

Sig. .000

Perhitungan selanjutnya adalah dengan melihat nilai MSA. Hasil nilai MSA dapat dilihat pada tabel dibawah. Hasil pada tabel menunjukkan bahwa 10 variabel yang tersisa mempunyai nilai lebih dari 0,5 berdasarkan 10 variabel yang dinilai dalam kuesioner yang merupakan jawaban 91 responden, diperoleh bahwa nilai MSA yang diperoleh di atas 0,5. Ini menandakan bahwa semua variabel memiliki korelasi cukup tinggi dengan variabel lainnya, sehingga selanjutnya dapat dilakukan analisis pada seluruh variabel yang diteliti.

Tabel 3.10 Measure Of Sampling Adequacy

No Variabel Nilai MSA

1 Variabel 1 0,570

2 Variabel 2 0,622

3 Variabel 3 0,644

4 Variabel 4 0,714

5 Variabel 6 0,694

6 Variabel 7 0,514


(45)

41

8 Variabel 9 0,556

9 Variabel 10 0,686

10 Variabel 11 0,661

3.7Proses Anlasisi faktor II (Ekstraksi)

Dalam penelitian ini metode yang akan digunakan adalah Principal Componen

Analysis (Analisis Komponen Utama). Didalam Principal Componen Analysis

jumlah varians data dipertimbangkan yaitu diagonal matriks korelasi, setiap elemennya sebesar satu dan full variance dipergunakan untuk dasar pembentukan faktor, yaitu variabel-variabel lama yang jumlahnya lebih sedikit dan tidak berkorelasi lagi satu samalain, seperti variabel-variebel asli yang memang saling berkorelasi. Communalities adalah jumlah varians yang disumbangkan oleh suatu variabel dengan seluruh variabel lainnya dengan analisis.

3.7.1 Communalities

Communalities pada dasarnya adalah jumlah varians dari suatu variabel awal yang

bisa dijelaskan oleh faktor yang ada. Semakin besar communalities sebuah variabel, maka semakin erat hubungannya dengan faktor.

Tabel 3.11Communalities

No Variabel Initial Extraction

1 Variabel 1 1,000 0,713

2 Variabel 2 1,000 0,586

3 Variabel 3 1,000 0,735

4 Variabel 4 1,000 0,644

5 Variabel 6 1,000 0,531

6 Variabel 7 1,000 0,691

7 Variabel 8 1,000 0,681

8 Variabel 9 1,000 0,650

9 Variabel 10 1,000 0,618


(46)

42

3.7.2 Total variance Explained

Total Variance Explaned menerangkan nilai persen dari varainsi yang mampu

diterangkan oleh banyaknya faktor yang terbentuk. Nilai ini berdasarkan nilai

eigenvalue.

Ada 10 variabel yang dimasukkan dalam analisis faktor, dengan masing masing varian memiliki varian 1, maka total varian adalah 10 x 1 = 10. Jika kesepuluh variabel diringkas menjadi 1 faktor, maka varians yang bisa dijelaskan oleh satu faktor tersebut adalah (lihat kolom Component 1 pada Tabel ):

2,422

10 100%= 24,22%

Jika 10 variabel diekstrak menjadi 4 faktor, maka: 1. Varian faktor pertama adalah 24,22% 2. Varian faktor kedua adalah 16,53% 3. Varian faktor ketiga adalah 12,72% 4. Varian Faktor keempat adalah 10,55%

Total keempat faktor akan menjelaskan 24,22%+16,53%+12,72% +10,55%= 64,02% atau keempat faktor tersebut akan menjelaskan 64,02% dari variabilitas kesepuluh yang asli tersebut.

Sedangkan eigenvalue manunjukkan kepentingan relatif masing-masing faktor dalam menghitung varians kesepuluh variabel yang dianlisis.

1. Jumlah angka egenvalue untuk kesepuluh variabel adalah sama dengan total varian kesepuluh variabel atau 2,422 + 1,653 + 1.272 + 1,055 + 0,882 + 0,704 + 0,659 + 0,558 + 0,451 + 0,344 = 10

2. Susunan eigenvalue selalu diurutkan dari yang terbesar sampai dengan yang terkecil, dengan kriteria bahwa angka eigenvalue dibawah 1 tidak digunakan dalam menghitung faktor yang terbentuk.


(47)

43

Tabel 3.12 Total Variance Explaained

Faktor atau Komponen

Initial Eigenvalues

Total % of

Variance

Comulative%

1 2,422 24,225 24,225

2 1,653 16,525 40,750

3 1,272 12,722 53,472

4 1,055 10,546 64,018

5 0,882 8,816 72,834

6 0,704 7,040 79,874

7 0,659 6,592 86,466

8 0,558 5,582 92,048

9 0,451 4,515 96,563

10 0,344 3,437 100,000

Dari tabel 3.10 diatas menyatakan bahwa hanya 4 faktor yang terbentuk, terlihat dari eigenvalue dengan nilai diatas 1, namun pada faktor yang kelima angka

eigenvalue sudah dibawah 1, yakni 0,882 sehingga proses Faktoring seharusnya

berhenti pada empat faktor saja, maka dalam penelitian ini hanya empat faktor yang terbentuk.

3.7.3 Scree Plot

Jika Tabel 3.10 Menjelaskan dasar jumlah faktor yang didapat dengan perhitungan angka, maka scree plot menunjukkan dengan grafik bahwa pada sumbu X (component number) faktor 5 sudah dibawah 1 dari sumbu Y (angka

eigenvalue). Hal ini menunjukkan bahwa 4 faktor adalah paling tepat untuk


(48)

44

Gambar 3.1 Scree Plot

Suatu Scree plot adalah plot dari eigen value melawan banyaknya faktor yang bertujuan untuk melakukan ekstraksi agar diperoleh jumlah faktor. Scree plot berupa suatu kurva yang diperoleh dengan memplot eigen value sebagai sumbu vertikal dana banyaknya faktor sebagai sumbu horizontal. Bentuk kurva atau plotnya dipergunakan untuk menentukan banyaknya faktor.

Jika tabel total variansi menjelaskan dasar jumlah faktor yang didapat dengan perthitungan angka, maka scree plot memperlihatkan hal tersebut dengan grafik. Terlihat bahwa dari suatu ke dua faktor (baris dari sumbu Component 1 ke-2), arah garis cukup menurun tajam. Kemudian dari 2 ,3 dan 4 garis juga menurun. Pada faktor 5 sudah dibawah angka 1 dari sumbu eigen value. Hal ini menunjukkan bahwa ada 4 faktor yang mnempengaruhi pernikahan di usia muda, yang dapat diekstraksi berdasarkan scree plot.


(49)

45

3.8 Proses Analisis Faktor III (Rotasi)

Hasil ekstraksi faktor awal memberikan informasi bahwa terdapat 4 faktor dari 10 variabel yang dapat diolah dengan variansi kumulatif sebesar 64,02%. Korelasi antara variabel-variabel dan faktor (Faktor Loading) hasil ekstarksi tersebut dapat dilihat pada tabel berikut.

Tabel 3.13 Faktor Loading Variabel

Penelitian

Faktor

1 2 3 4

1 0,316 0,259 0,605 -0,424

2 0,481 -0,086 0,589 0,003

3 0,454 0,006 -0,011 0,727

4 0,680 0,205 -0,288 -0,238

6 0,436 -0,347 0,004 0,143

7 -0,141 0,722 0,018 0,388

8 -0,112 0,605 -0,472 0,281

9 0,023 0,695 0,393 0,107

10 0,713 0,210 -0,247 0,069

11 0,831 -0,033 -0,191 -0,152

Dari Tabel diatas dapat dilihat bahwa variabel-variabel berkorelasi kuat dengan lebih dari satu faktor, sehingga sulit untuk menginterpretasikan faktor-faktor tersebut. Dalam hal ini, faktor loading perlu dirotasi agar masing-masing variabel berkorelasi kuat hanya pada satu faktor. Berikut ini adalah Faktor Loading setelah dirotasi (Rotated Faktor Loading).

Tabel 3.14 Rotated Factor Loading Variabel

Penelitian

Faktor

1 2 3 4

1 0,139 0,112 0,806 -0,178

2 0,127 -0,056 0,666 0,352

3 0,256 0,237 -0,117 0,774

4 0,795 -0,008 0,091 -0,065

6 0,261 -0,305 0,075 0,405

7 -0,032 0,822 -0,117 0,029


(50)

46

faktor 3 sebesar 0,806 (Korelai kuat), sedangkan korela dengan faktor 1, 2, dan 4 masing-masing 0,139, 0,112, dan -0,178 (korelasi lemah).

3.9 Proses Analisis Faktor IV (Interpretasi Faktor) Faktor Pertama

Faktor pertama hasil rotasi faktor didukung oleh 3 variabel. Variabel-variabel tersebut yang secara berurutan nilai bobotnya adalah X4, X10, dan X11 Bobot

masing-masing variabel pendukung faktor pertama tersebut sesuai tabel beriku ini.

Tabel 3.15 Bobot Variabel Pendukung Faktor Pertama

Variabel

Pendukung Nama Variabel

Bobot Variabel X4

Perjodohan yang dilakukan orang tua memiliki pengaruh besar dalam terjadinya pernikahan di usia muda.

0,795 X10 Latar belakang adat istiadat merupakan salah satu

pendorong untuk melakukan pernikahan di usia muda 0,749 X11

Semakin gencarnya ekspose seks di media massa menyebabkan kian terbuka terhadap seks sehingga menarik perhatian remaja untuk lebih memilih cepat menikah diusia muda

0,809

Dari tabel diatas variabel X11 mempunyai bobot terbesar yaitu 0,809. Berdasarkan

uraian tersebut dapat disimpulkan bahwa untuk faktor pertama cukup layak diberi nama Faktor Media Massa/Internet.

Faktor ini adalah faktor yang paling kuat yang mendasari keputusan remaja menikah keputusan remaja menikah diusia muda dengan variansi sebesar 24,225% serta melibatkan 3 variabel.

Faktor Kedua

Faktor kedua hasil rotasi faktor didukung oleh 3 variabel. Bobot masing-masing variabel pendukung faktor kedua tersebut sesuai tabel berikut:

Tabel 3.16 Bobot Variabel Pendukung Faktor Kedua

Variabel

Pendukung Nama Variabel

Bobot Variabel X7

Dampak dari pergaulan bebas (Married By Accident)


(51)

47

X8

Rendahnya tingkat pendidikan penegtahuan orang tua dan anak menyebabkan adanya kecenderungan mengawinkan anaknya yang masih dibawah umur.

0,398 X9

Bilatemansebayasudahbanyakmenikahmakadoronganunt

ukmenikahbertambahbesartanpamempertimbangkanusia 0,718 Dari tabel diatas, variabel X7 mempunyai bobot terbesar, yaitu sebesar 0,812.

Berdasarkan uraian tersebut dapat disimpulkan bahwa untuk faktor kedua cukup layak diberi nama sebagai Faktor Pergaulan Bebas.

Faktor ini adalah faktor terkuat kedua yang mendasari penelitian terhadap keputusan remaja menikah di usia muda dengan variance sebesar 16,525% serta melibatkan 3 buah variabel.

Faktor Ketiga

Faktor ketiga yang rotasi faktor didukung oleh 2 variabel. Masing-masing variabel pendukung faktor ketiga sesuai tabel berikut ini:

Tabel 3.17 Bobot Variabel Pendukung faktor Ketiga

Variabel

Pendukung Nama Variabel

Bobot Variabel X1 Pernikahan dini merupakan sebuah cara untuk bertahan

secara ekonomi. 0,806

X2

Pernikahan di usa muda merupakan motif untuk memperoleh atau memenuhi kebutuhan biologis atau pencegah perilaku seks pra-nikah.

0,666

Dari tabel diatas variabel X1 mempunyai bobot terbesar yaitu 0,806. Berdasarkan

uraian tersebut dapat disimpulkan bahwa faktor kedua cukup layak diberi nama sebagai faktor ekonomi.

Faktor ini adalah faktor terkuat keempat yang mendasari penilaian terhadap keputusan remaja menikah di usia muda dengan variance sebesar 12,722% serta melibatkan 2 buah variabel.


(52)

48

Tabel 3.18Bobot Variabel Pendukung Faktor Kempat

Variabel

Pendukung Nama Variabel

Bobot Variabel X3

Pernikahan pada umumnya dilakukan karena saling mencintai, rasa takut kehilangan pasangan dan merasa siap untuk menikah.

0,774 X6

Rasa keinginan untuk segera mendapatkan tambahan anggota keluarga merupakan faktor yang berpengaruh terhadap pernikahan usia muda.

0,405

Dari tabel diatas variabel X3 mempunyai bobot terbesar, yaitu sebesar 0,774.

Berdasarkan uraian tersebut dapat disimpulkan bahwa untuk faktor keempat cukup layak diberi nama sebagai faktor rasa takut kehilangan.


(53)

49

BAB 4

KESIMPULAN DAN SARAN

4.1 Kesimpulan

Dari hasil pengolahan data dan analisa, maka hasil penelitian dengan 91 responden dan 11 variabel pernyataan penelitian mengambil kesimpulan:

1. Terdapat 4 faktor hasil ekstraksi yang berpengaruh terdapat keputusan remaja menikah di usia muda. Hal ini digambarkan dari varainsi kumulatif sebesar 64,02%.

2. Keempat faktor tersebut adalah Faktor Media massa 24,225%, faktor Pergaulan bebas 16, 526%, Faktor Ekonomi 12,722%, dan Faktor Rasa takut kehilangan 10,546%.

3. Faktor Media Masa ternyata merupakan faktor dominan yang menjadi pengaruh terkuat dalam pengambilan keputusan remaja usia menikah di usia muda.

4.2 Saran

Menurut hasil penelitian diatas ada dua hal yang disampaikan sebagai saran, yaitu: 1. Intervensi terhadap orang tua remaja perlu dilakukan, kegiatan sekolah dan keterpaparan informasi tentang kesehatan reproduksi dapat menjadi salah satu alternatif untuk menunda pernikahan dini. Peningkatan usia minimal untuk menikah diharapkan meminimalisir tingkat pernikahan usia muda di indonesia.

2. Dalam analisis faktor, terdapat beberapa metode untukmengestimasi bobot faktor, yaitu analisis komponen utama, metode maximum likelihood, dan

common faktor analysis. Terdapat juga beberapa metode rotasi ortogonal,


(54)

11

BAB 2

LANDASAN TEORI

2.1Remaja

2.1.1 Defenisi Remaja

Menurut Papalia (2004) remaja adalah transisi perkembangan antara masa kanak-kanak dan masa dewasa yang meliputi perubahan secara fisik, kognitif, dan perubahan sosial.Lahey (2004) menyatakan bahwa remaja adalah periode yang dimulai dari munculnya pubertas sampai pada permulaan masa dewasa.

Hurlock (1999) mengemukakan istilah adolescence atau remaja yang berasal dari bahasa latinadolescence yang berarti “tumbuh” atau “tumbuh menjadi

dewasa”. Istilah adolescence, seperti yang dipergunakan saat ini juga mempunyai

arti yang luas, mencakup kematangan mental, emosional, sosial, dan fisik.

Menurut Padgett (1999) secara psikologis masa remaja adalah usia dimana individu berintegrasi dengan masyarakat dewasa. Lazimnya masa remaja dianggap mulai pada saat anak secara seksual menjadi matang dan berakhir sampai menjadi matang secara hukum.

Batasan remaja menurut WHO lebih konseptual. Dalam definisi ini dikemukakan 3 kriteria yaitu biologi, psikologi, dan sosial ekonomi, sehingga secara lengkap definisi tersebut berbunyi sebagai berikut: Remaja adalah suatu masa dimana:

1. Individu berkembang dari saat pertama kali menunjukkan tanda-tanda seksual skundernya saat mencapai kematangan seksual.

2. Individu mengalami perkembangan psikologi dan pola identitas dari kanakkanak menjadi dewasa.

3. Terjadi peralihan dari ketergantungan sosial-ekonomi yang penuh kepada keadaan yang relatif lebih mandiri.

Berdasarkan beberapa pendapat diatas dapat disimpulkan masa remaja merupakan masa dimana individu mengalami transisi perkembangan dari masa kanak-kanak menuju dewasa, kematangan mental, emosional, sosial, dan fisik, usia dimana individu mulai berhubungan dengan masyarakat, dan telah


(55)

12

mengalami perkembangan tanda-tanda seksual, pola psikologi, dan menjadi lebih mandiri.

2.1.2 Pembagian Masa Remaja

Menurut Monks (2001) batasan remaja adalah antara 12 tahun sampai 21 tahun. Monks membagi batasan usia ini dalam tiga fase, yaitu:

1. Fase remaja awal: usia 12 tahun sampai 15 tahun

2. Fase remaja pertengahan: usia 15 tahun sampai 18 tahun. 3. Fase remaja akhir:usia 18 tahun sampai 21 tahun.

Batasan usia remaja untuk masyarakat Indonesia sendiri adalah antara usia 11 tahun sampai usia 24 tahun. Hal ini dengan pertimbangan bahwa usia 11 tahun adalah usia dimana pada umumnya tanda-tanda seksual skunder mulai tampak. Batasan usia24 tahun merupakan batas maksimal individu yang belum dapat memenuhi persyaratan kedewasaan secara sosial maupun psikologi. Individu yang sudah menikah dianggap dan diperlukan sebagai individu dewasa penuh sehingga tidak lagi digolongkan sebagai remaja (Sarwono, 2003).

The UN Convention on the right of the child (CRC) menandakan bahwa

batasan usia 18 tahun merupakan usia yang berada diantara masa kanak-kanak dan masa dewasa, usia ini merupakan batasan usia remaja. CRC juga mengatakan bahwa individu yang berusia dibawah 18 tahun masih dianggap sebagai usia anak-anak atau remaja. The world health organization (WHO) memiliki batasan yang tidak jauh berbeda. Batasan usia remaja menurut WHO adalah individu yang berusia pada rentang 10-19 tahun.

Berdasarkan dari beberapa pendapat diatas maka dapat disimpulkan bahwa rata-rata batasan usia remaja berkisar 10 tahun sampai 24 tahun, dengan pembagian fase remaja awal berkisar 10-15 tahun, fase remaja berkisar 16-18 tahun dan fase remaja akhir berkisar 19-24 tahun.


(56)

13

2.2Definisi Pernikahan Dini

Pernikahan usia muda terdiri dari dua kata yaitu pernikahan dan usia muda. Pernikahan berasal dari bahasa Arab yaitu An-nikah yang berarti menghimpun dan mengumpulkan.Dalam pengertian fiqih nikah adalah akad yang mengandung kebolehan melakukan hubungan suami istri dengan lafaz perkawinan/pernikahan atau yang semakna dengan itu.

Dalam pengertian yang luas pernikahan adalah suatu akad atau perikatan untuk menghalalkan hubungan kelamin antara laki-laki dan perempuan dalam rangka mewujudkan kebahagiaan hidup berkeluarga yang diliputi rasa ketentraman serta kasih sayang dengan cara yang diridhoi Allah.

Usia muda menunjukkan usia belia, ini bisa digunakan untuk menyebutkan sesuatu yang dilakukan sebelum batas usia minimal. Undang-Undang perkawinan No. 1 Tahun 1974, pasal 1 merumuskan arti perkawinan sebagai ikatan lahir batin antara seorang pria dan wanita sebagai suami istri dengan tujuan untuk membentuk keluarga yang bahagia dan kekal berdasarkan Ketuhanan Yang Maha Esa.

Pasal 6 ayat 2 UU No. 1 Tahun 1974 menyatakan bahwa untuk melangsungkan suatu perkawinan seseorang yang belum mencapai umur 21 tahun harus mendapat ijin dari kedua orang tua. Seperti halnya juga telah dijelaskan dalam UU Republik Indonesia Nomor 1 pasal 1 tahun 1974 tentang perkawinan, yang menyatakan bahwa perkawinan adalah ikatan lahir batin antara seorang pria dengan wanita sebagai suami isteri dengan tujuan membentuk keluarga yang bahagia dan kekal berdasarkan Ketuhanan Yang Maha Esa.

Di dalam masyarakat sekarang ini masih banyak dijumpai sebagian masyarakat yang melangsungkan perkawinan di usia muda atau di bawah umur. Sehingga Undang-undang yang telah dibuat, sebagian tidak berlaku di suatu daerah tertentu meskipun Undang-Undang tersebut telah ada sejak dahulu.

Padahal pernikahan yang ideal untuk perempuan adalah 20-25 tahun sementara laki-laki 24-28 tahun. Karena di usia itu organ reproduksi perempuan secara psikologis sudah berkembang dengan baik dan kuat serta siap untuk melahirkan keturunan secara fisik pun mulai matang. Sementara laki-laki pada usia itu kondisi psikis dan fisiknya sangat kuat, hingga mampu menopang


(57)

14

kehidupan keluarga untuk melindungi baik sera psikis emosional, ekonomi dan sosial.

Melakukan perkawinan tanpa kesiapan dan pertimbangan yang matang dari satu sisi dapat mengindikasikan sikap tidak affresiatif terhadap makna nikah dan bahkan lebih jauh bisa merupakan pelecehan terhadap kesakralan sebuah perkawinan. Sebagian masyarakat yang melangsungkan perkawinan usia muda ini dipengaruhi karena adanya beberapa faktor-faktor yang mendorong mereka untuk melangsungkan perkawinan usia muda atau di bawah umur.

Dan setelah melihat uraian diatas maka dapat ditarik kesimpulan bahwa perkawinan usia muda adalah perkawinan remaja dilihat dari segi umur masih belum cukup atau belum matang untuk membentuk sebuah keluarga. Sedangkan menurut kesehatan melihat perkawinan usia muda itu sendiri yang ideal adalah perempuan diatas 20 tahun sudah boleh menikah, sebab perempuan yang menikah dibawah umur 20 tahun beresiko terkena kanker leher rahim. Dan pada usia remaja, sel-sel leher rahim belum matang, maka kalau terpapar human papiloma Virus HPV pertumbuhan sel akan menyimpang menjadi kanker (Nugroho Kompono, 2007).

2.3Data

Data merupakan sejumlah informasi yang dapat memberikan gambaran tentang sesuatu keadaan.Informasi yang diperoleh memberikan keterangan, gambaran, atau fakta mengenai suatu persoalan dalam bentuk kategori, huruf, atau bilangan.Data digunakan untuk menyediakan informasi bagi suatu penelitian, pengukuran kinerja, dasar pembuatan keputusan dan menjawab rasa ingin tahu. Jenis-jenis data berdasarkan cara memperolehnya yaitu:


(58)

15

2. Data sekunder

Data sekunder merupakan data primer yang diperoleh oleh pihak lain atau data primer yang telah diolah lebih lanjut dan disajikan baik oleh pengumpul data primer atau pihak lain yang pada umumnya disajikan dalam bentuk tabel-tabel atau diagram-diagram. (Sugiarto, dkk, 2001).

2.4 Skala Pengukuran

Teknik pengukuran data yang digunakan adalah attitude scales, yaitu suatu kumpulan alat pengukuran yang mengukur tanggapan individu terhadap suatu objek atau fenomena.

Skala pengukuran dari data yang diperoleh adalah berupa skala ordinal dengan menggunakan skala Likert, dengan bobot nilai 5, 4, 3, 2, 1.

Berdasarkan skala pengukurannya data dibedakan menjadi 4 macam, yaitu:

1. Skala Nominal

Misalnya: jenis kelamin, agama, dan sebagainya. Sering juga data nominal diberi simbol bilangan saja.Misalnya : laki-laki diberi nilai 1, perempuan diberi nilai 2.

2. Skala Ordinal Data yang diukur menggunakan ordinal selain mempunyai ciri nominal, juga mempunyai ciri berbentuk peringkat atau jenjang. Misalnya tingkat pendidikan nilai ujian (dalam huruf). 3. Skala Interval Data yang diukur menggunakan skala interval selain

mempunyai ciri nominal dan ordinal, juga mempunyai ciri interval yang sama.

4. Skala Rasio Skala rasio ini selain mempunyai ketiga ciri dan skala pengukuran diatas, juga mempunyai nilai nol yang bersifat mutlak. Misalnya : umur, berat sesuatu, pendapatan, dan sebagainya.


(59)

16

2.5 Teknik Sampling

Teknik sampling adalah suatu cara untuk menentukan banyaknya sampel dan pemilihan calon anggota sampel, sehingga setiap sampel yang terpilih dalam penelitian dapat mewakili populasinya (representatif) baik dari aspek jumlah maupun dari aspek karakteristik yang dimiliki populasi. Sampling adalah proses pemilihan sejumlah elemen dari populasi sehingga dengan meneliti dan memahami karakteristik sampel dapat digeneralisir untuk karakteristik populasi. Jarang sekali suatu penelitian dilakukan dengan cara memeriksa semua objek yang diteliti (sensus), tetapi sering digunakan sampling (Teken, 1965), alasannya adalah:

1. Biaya, waktu dan tenaga untuk menyelidiki melalui sensus.

2. Populasi yang berukuran besar selain sulit untuk dikumpulkan, dicatat dan dianalisis, juga biasanya akan menghasilkan informasi yang kurang teliti. Dengan cara sampling jumlah objek yang harus diteliti menjadi lebih kecil, sehingga lebih terpusat perhatiannya.

3. Percobaan-percobaan yang berbahaya atau bersifat merusak hanya cocok dilakukan dengan sampling.

Keuntungan dengan menggunakan teknik sampling antara lain adalah mengurangi ongkos, mempercepat waktu penelitian dan dapat memperbesar ruang lingkup penelitian (Teken, 1965). Metode pengambilan sampel yang ideal memiliki sifat-sifat sebagai berikut:

1. Dapat menghasilkan gambaran yang dapat dipercaya dari seluruh populasi yang diteliti.

2. Dapat menentukan ketepatan hasil penelitian dengan menentukan penyimpangan baku dari taksiran yang diperoleh.

3. Sederhana dan mudah diperoleh.


(60)

17

1. Derajat keseragaman populasi.

2. Ketepatan yang dikehendaki dari penelitian. 3. Rencana analisis.

4. Tenaga, biaya dan waktu.

Teknik sampling dapat dikelompokkan menjadi dua, yaitu: 1. Probability sampling, meliputi:

a. Simple random sampling (populasi homogen) yaitu pengambilan sampel dilakukan secara acak tanpa memperhatikan strata yang ada. Teknik ini hanya digunakan jika populasinya homogen.

b. Proportionale stratifiled random sampling (populasi tidak homogen) yaitu pengambilan sampel dilakukan secara acak dengan memperhatikan strata yang ada. Artinya setiap strata terwakili sesuai proporsinya.

c. Disproportionate stratifiled random sampling yaitu teknik ini digunakan untuk menentukan jumlah sampel dengan populasi berstrata tetapi kurang proporsional, artinya ada beberapa kelompok strata yang ukurannya kecil sekali.

d. Cluster sampling (sampling daerah) yaitu teknik ini digunakan untuk menentukan jumlah sampel jika sumber data sangat luas. Pengambilan sampel didasarkan daerah populasi yang telah ditetapkan.

2. Non probability sampling, meliputi: sampling sistematis, sampling kuota, sampling incidental, purposive sampling, sampling jenuh, dan snowball sampling.

2.6 Metode Pengambilan Sampel

Dalam penelitian ini metode pengambilan sampel yang digunakan adalah

Proportionale stratifiled random sampling (populasi tidak homogen) yaitu

pengambilan sampel dilakukan secara acak dengan memperhatikan strata yang ada. Artinya setiap strata terwakili sesuai proporsinya.


(61)

18

=

1+ 2

2.1

Keterangan :

n : Jumlah sampel N : Populasi

e : Persentase kelonggaran ketelitian karena kesalahan pengambilan sampel

2.7 Analisis Data 2.7.1 Uji Validitas

Validitas menunjukkan sejauh mana suatu alat ukur dapat mengukur sesuai dengan apa yang ingin diukur.Seandainya peneliti ingin mengukur kuesioner di dalam pengumpulan data penelitian, maka kuesioner yang disusunnya harus mengukur apa yang ingin diukurnya.

Untuk menghitung nilai pada item pertanyaan dapat dilakukan dengan rumus:

= ∑ −(∑ .∑ )

{ ∑ 2( )2}{ 2( )2 2.2

Keterangan:

rxy : Koefisien Korelasi

: Skor pertanyaan : Skor total n : Jumlah Sampel

Untuk melakukan uji validitas secara manual dalam penelitian ini menggunakan tabel t-student untuk menghitung denganmenggunakan nilai α = 5% (0,05). Dalam penelitian ini diperoleh dari rumus.Validitas terbagi atas empat macam, yaitu:


(62)

19

diberikan.Misalnya seorang peneliti ingin mengukur bagaimana persepsi konsumen terhadap suatu produk.

b. Validitas Konstruk (Construct Validity)

Sebuah tes dikatakan memiliki validitas konstruksi apabila butirbutir soal yang membangun tes tersebut mengukur setiap aspek berpikir seperti yang disebutkan dalam tujuan instruksional khusus.

c. Validitas “ada sekarang” (Concurrent Validity)

Validitas ini lebih umum dikenal dengan validitas empiris.Sebuah tes dikatakan memiliiki validitas empiris jika hasilnya sesuai dengan pengalaman.Misalnya seorang guru ingin mengetahui apakah tes sumatif yang disusun sudah valid atau belum.

d. Validitas Prediksi (Predictive Validity)

Memprediksi artinya meramal, dan meramal selalu mengenai hal yang akan datang, sehingga sekarang ini belum terjadi. Sebuah tes dikatakan memiliki validitas prediksi apabila mempunyai kemampuan untuk meramalkan apa yang akan terjadi pada masa yang akan datang.

2.7.2 Uji Reliabilitas

Realibilitas merupakan indeks yang menunjukkan sejauhmana suatu alat ukur dapat dipercaya atau dapat diandalkan.Pengukuran yang memiliki realibilitas tinggi disebut sebagai pengukuran yang reabel.

Nilai Alpha Cronbach diperoleh dengan menggunakan rumus sebagai berikut:

11 = 1 1−

2.3 Keterangan:

: nilai koefisien Cronbach Alpha : banyaknya variaber penelitian

∑ 2 : jumlah varians variabel penelitian : varians total


(63)

20

Adapun teknik perhitungan reliabel ada beberapa cara, yaitu sebagai berikut: a. Teknik Pengukuran Ulang (Testretest)

Teknik ini meminta kepada responden yang sama untuk menjawab pertanyaan dalam alat pengukuran sebanyak dua kali. Caranya perhitungannya adalah dengan mengkorelasikan jawaban pada wawancara pertama dengan jawaban pada wawancara kedua.

b. Teknik Belah Dua

Untuk menggunakan teknik belah dua sebagai cara menghitung reliabilitas alat pengukur, maka alat pengukur yang disusun harus memiliki cukup banyak item pertanyaan yang mengukur aspek yang sama.

c. Teknik Bentuk Paralel

Perhitungan reliabilitas dilakukan dengan membuat dua jenis alat pengukur yang mengukur aspek yang sama. Kedua alat ukur tersebut diberikan pada responden yang sama, kemudian dicari validitasnya untuk masing-masing jenis.

d. Internal Consistency Reliability

Internal consistency reliability berisi tentang sejauh mana item-item instrumen bersifat homogen dan mencerminkan konstruk yang sama sesuai dengan yang melandasinya.Suatu variabel dikatakan reliabel jika memberikan nilai cronbach alpha > 0,60 atau nilai cronbach alpha > 0,80 (Kuncoro, 2003).

2.8 Transformasi Data Ordinal menjadi Interval

Proses transformasi merupakan upaya yang dilakukan untuk merubah data ordinal menjadi data interval misalnya analisis faktor dimana variabel bebasnya harus berskala interval. Data ordinal yang ditransformasikan menjadi data interval adalah data penelitian yang diperoleh menggunakan instrumen berupa angket


(64)

21

2. Setiap frekuensi dibagi dengan banyaknya responden dan hasilnya disebut proporsi

3. Menentukan nilai proporsi kumulatif dengan menjumlahkan nilai proporsi berurutan perkolom skor.

4. Menghitung nili Z untuk setiap proporsi dengan menggunakan tabel distribusi normal.

5. Menentukan nilai densitas untuk setiap nilai Z yang diperoleh dengan menggunakan tabel densitas.

6. Menentukan SV (Scale Value = nilai skala) dengan rumus sebagai berikut:

= −

Keterangan:

SV = interval rata-rata

Density at lower limit = kepadatan batas bawah

Density at upper limit = kepadatan batas atas

Area below upper limit = daerah dibawah batas bawah

Area below lower limit = Daerah diatas batas bawah 7. Menentukan nilai transformasi dengan rumus:

= +

Keterangan:

: Nilai hasil Penskalaan akhir : Nilai Skala

| min| : Nilai Skala minimum

2.9 Analisis Faktor

Menurut J. Supranto (2004), analisis faktor merupakan teknik statistika yang utamanya dipergunakan untuk mereduksi atau meringkas data dari variabel yang banyak diubah menjadi sedikit variabel, misalnya dari 15 variabel yang lama diubah menjadi 4 atau 5 variabel yang baru yang disebut faktor dan masih


(65)

22

memuat sebagian besar informasi yang terkandung dalam variabel asli (original

variable).

Dalam analisis factor tidak ada variabel dependen dan independen, proses analisis faktor sendiri mencoba menemukan hubungan (interrelationship) antara sejumlah variabel yang saling dependen dengan yang lain sehingga bisa dibuat satu atau beberapa kumpulan variabel yang lebih sedikit dari jumlah awal. Analisis faktor digunakan di dalam situasi sebagai berikut:

d. Mengenali atau mengidentifikasi dimensi yang mendasari (underlying

dimensions) atau faktor yang menjelaskan korelasi antara suatu set variabel.

e. Mengenali dan mengidentifikasi suatu set variabel baru yang tidak berkorelasi (independent) yang lebih sedikit jumlahnya untuk menggantikan suatu set variabel asli yang saling berkorelasi di dalam analisis multivariat selanjutnya.

f. Mengenali atau mengidentifikasi suatu set variabel yang penting dari suatu

set variabel yang lebih banyak jumlahnya untuk dipergunakan di dalam

analisis multivariat selanjutnya.

Kalauvariabel-variabel dibakukan (standardized), model analisis faktor bisa ditulis sebagai berikut:

= 1�1+ 2�2+ 3�3+⋯+ � +⋯+ � + � 2.4

keterangan:

:Variabel ke-i yang dibakukan (rata-ratanya nol, standardeviasinya satu). :Koefisien regresi parsial yang dibakukan untuk variabel i

pada common factor ke-j.

:common factor ke-j.

:Koefisien regresi yang dibakukan untuk variabel ke-i pada faktor yang unik ke-i (unique factor).


(1)

vi

vi

ABSTRACT

Factor analysis is a data analysis technique that is intended to reduce the number of variables into smaller groups called factors. The purpose of observation is to identify the factors driving young marriege by using factor analysis. The sampling technique that used cluster sampling. Variables used as many as 11. From the data obtained to test the validity and reliability and factor analysis using SPSS 17.0 software for windows. The analysis showed that there are one varaibles that are not valid and should be excluded from analysis. Based on the research results obtained by four dominant factors that effect teen decision to marry at a young age that Internet (24,225%), social factors (16,526%), economic factors (12,722%), and factor of fear of losing (10,546%). The four factors giving the diversity of gasoline at 64,02% means the four factors is a dominant factor and the rest of it can be influenced by factors others were not identified by research. Keywords : Factor anlysis, cluster sampling, early marriage.


(2)

vii

vii

DAFTAR ISI

Halaman

Persetujuan i

Pernyataan ii

Penghargaan iii

Abstrak iv

Abstrack v

Daftar Isi vi

Daftar Tabel viii

Daftar Gambar ix

Daftar Lampiran x

BAB 1 Pendahuluan

1.1 Latar Belakang 1

1.2 Perumusan Masalah 4

1.3 Batasan Masalah 4

1.4 Tujuan Penelitian 5

1.5 Kontribusi Penelitian 5

1.6 Tinjauan Pustaka 5

1.7 Metode Penelitian 9

BAB 2 Landasan Teori

2.1 Remaja 11

2.1.1 Defenisi Remaja 11

2.1.2 Pembagian Masa Remaja 12

2.2 Defenisi Pernikahan Dini 13

2.3 Data 14

2.4 Skala Pengukuran 15

2.5 Teknik Sampling 16

2.6 Metode Pengambila Sampel 17

2.7 Analisis Data 18

2.7.1 Uji Validitas 18

2.7.2 Uji Reliabilitas 19

2.8 Transformasi Data Ordinal Menjadi Interval 20

2.9 Analisis Faktor 21

2.10 langkah-langklah Analisis Faktor 24

2.10.1 Tabulasi Data 24

2.10.2 Pembentukan Matriks Korelasi 24

2.10.3 Ekstraksi faktor 26

2.10.4 Rotasi Faktor 29

2.10.5 Penamaan faktor 29


(3)

viii

viii BAB 3 Pembahasan

3.1 Prosedur Penelitian 32

3.2 Sampel Penelitian 32

3.3 Uji Validitas 34

3.4 Uji Reliabilitas 36

3.5 Penskalaan Ordinal Menjadi Interval 38

3.6 Proses Analisi faktor I 40

3.7 Proses Analisis faktor II (Ekstraksi) 41

3.7.1 Communalities 41

3.7.2 Total Variance Explained 42

3.7.3 Scree Plot 43

3.8 Proses Analisis Faktor III (Rotasi) 45

3.9 Proses Analisis Faktor IV (Interpretasi Faktor) 46 BAB 4 Kesimpulan dan Saran

4.1 Kesimpulan 49

4.2 Saran 49


(4)

ix

ix

DAFTAR TABEL

Halaman

Tabel 3.1 Populasi Penelitian 32

Tabel 3.2 Populasi dan Penilitian tiap Strata atau Daerah 33

Tabel 3.3 Uji Validitas 1 34

Tabel 3.4 Uji Validitas 2 34

Tabel 3.5 Contoh Perhitungan Korelasi Produck Momentl 35

Tabel 3.6 Hasil Cronback Alpha Reliability 36

Tabel 3.7 Penskalaan Variabel 1 38

Tabel 3.8 Hasil Penskalaan Tiap Vriabel 39

Tabel 3.9 KMO and Barlet Test 40

Tabel 3.10 Measure Of Sampling Aduquacy 40

Tabel 3.11 Comunalities 41

Tabel 3.12 Total Variance Explaaned 43

Tabel 3.13 Faktor Loading 45

Tabel 3.14 Rotated Faktor Loading 45

Tabel 3.15 Bobot Variabel Pendukung Faktor Pertama 46 Tabel 3.16 Bobot Variabel Pendukung Faktor Kedua 46 Tabel 3.17 Bobot Variabel Pendukung Faktor Ketiga 47 Tabel 3.18 Bobot Variabel Pendukung Faktor Keempat 48


(5)

x

x

DAFTAR GAMBAR

Halaman


(6)

xi

xi

DAFTAR LAMPIRAN

Halaman

Lampiran 1 Kuesioner Penelitian 1

Lampiran 2 Data Penelitian Responden 4

Lampiran 3 Succesive Detail 8

Lampiran 4 Succesive Interval 10

Lampiran 5 Output Spss 17