Proof of Theorem 1.1 a

3.1 Proof of Theorem 1.1 a

We start by deriving a recursive representation for µn. For k ∈ N ∪ {0}, E [X k n + 1|X n] = 1 n + 1 n X i=1 E h −1l {Z [i,n]=kZ [i,n+1]} + 1l {Z [i,n]k=Z [i,n+1]} X n i + nX k n + 1l {k=0} = X k n + 1 n + 1 h −nX k n f k n + nX k −1 n f k − 1 n − X k n + 1l {k=0} i . Thus the linearity and the tower property of conditional expectation gives µ k n + 1 = µ k n + 1 n + 1 f k − 1µ k −1 n − 1 + f kµ k n + 1l {k=0} . Now defining Q ∈ R N ×N as Q =       − f 0 f 0 1 − f 1 + 1 f 1 1 − f 2 + 1 f 2 .. . ... ...       11 and conceiving µn as a row vector we can rewrite the recursive equation as µn + 1 = µn I + 1 n + 1 Q , where I = δ i, j i, j ∈N denotes the unit matrix. Next we show that µ is a probability distribution with µQ = 0. By induction, we get that 1 − k X l=0 µ l = k Y l=0 f l 1 + f l for any k ∈ N ∪ {0}. Since P ∞ l=0 1 f l ¾ P ∞ l=0 1 l + 1 = ∞ it follows that µ is a probability measure on the set N ∪ {0}. Moreover, it is straightforward to verify that f 0 µ = 1 − µ = ∞ X l=1 µ l and that for all k ∈ N ∪ {0} f k − 1 µ k −1 = 1 + f k µ k , hence µQ = 0. Now we use the matrices P n := I + 1 n+1 Q to define an inhomogeneous Markov process. The entries of each row of P n sum up to 1 but as long as f is not bounded each P n contains negative entries... Nonetheless one can use the P n as a time inhomogeneous Markov kernel as long as at the starting time m ∈ N the starting state l ∈ N ∪ {0} satisfies l ¶ m − 1. 1237 We denote for any admissible pair l, m by Y l,m n n ¾ m a Markov chain starting at time m in state l having transition kernels P n n ¾ m . Due to the recursive equation we now have µ k n = PY 0,1 n = k. Next, fix k ∈ N∪{0}, let m k arbitrary, and denote by ν the restriction of µ to the set {m, m+1, . . . }. Since µ is invariant under each P n we get µ k = µP m . . . P n k = m −1 X l=0 µ l P Y l,m n = k + ν P m . . . P n k . Note that in the n-th step of the Markov chain, the probability to jump to state zero is 1 n+1 for all original states in {1, . . . , n − 1} and bigger than 1 n+1 for the original state 0. Thus one can couple the Markov chains Y l,m n and Y 0,1 n in such a way that P Y l,m n+1 = Y 0,1 n+1 = 0 | Y l,m n 6= Y 0,1 n = 1 n+1 , and that once the processes meet at one site they stay together. Then P Y l,m n = Y 0,1 n ¾ 1 − n −1 Y i=m i i + 1 −→ 1. Thus ν P m . . . P n k ∈ [0, µ[m, ∞] implies that lim sup n →∞ µ k − PY 0,1 n = k m −1 X l=0 µ ∗ l ¶ µ[m, ∞. As m → ∞ we thus get that lim n →∞ µ k n = µ k . In the next step we show that the sequence of the empirical indegree distributions X n n ∈N con- verges almost surely to µ. Note that n X k n is a sum of n independent Bernoulli random variables. Thus Chernoff’s inequality Chernoff [1981] implies that for any t P X k n ¶ E[X k n] − t ¶ e −nt 2 2E[X k n] = e −nt 2 2µ k n . Since ∞ X n=1 e −nt 2 2µ k n ∞, the Borel-Cantelli lemma implies that almost surely lim inf n →∞ X k n ¾ µ k for all k ∈ N ∪ {0}. If A ⊂ N ∪ {0} we thus have by Fatou’s lemma lim inf n →∞ X k ∈A X k n ¾ X k ∈A lim inf n →∞ X k n = µA. 1238 Noting that µ is a probability measure and passing to the complementary events, we also get lim sup n →∞ X k ∈A X k n ¶ µA. Hence, given ε 0, we can pick N ∈ N so large that µN, ∞ ε, and obtain for the total variation norm lim sup n ↑∞ 1 2 ∞ X k=0 X k n − µ k ¶ lim sup n ↑∞ 1 2 N X k=0 X k n − µ k + 1 2 lim n ↑∞ ∞ X k=N +1 X k n + 1 2 µN , ∞ ¶ ε. This establishes almost sure convergence of X n to µ in the total variation norm.

3.2 Proof of Theorem 1.1 b

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52