The moderate deviation principle

Note further that, for any δ 0 and T 0, there exists ǫ 0 such that Jx ¶ ǫ implies sup 0¶t¶T |x − y| δ, where y t = t − a + for some a ∈ [0, T ]... Then, for θ f 0, P sup 0¶t¶T | 1 κ Z κt − y| ¶ δ ¶ P Z κa ¶ δκ = P T [0, κδ] ¾ κa ¶ e −κaθ Y Φ j¶κδ E exp θ S j = e −κaθ exp X Φ j¶κδ log 1 1 − θ f j , and the result follows because the sum on the right is bounded by a constant multiple of κδ. ƒ

4.3 The moderate deviation principle

Recall from the beginning of Section 4.2 that it is sufficient to show Theorem 1.15 for the approx- imating process Z defined in 17. We initially include the case c = ∞ in our consideration, and abbreviate b κ := a κ κ 2 α−1 1 −α ¯ ℓκ ≪ κ α 1 −α ¯ ℓκ, so that we are looking for a moderate deviation principle with speed a κ b κ . Lemma 4.12. Let 0 ¶ u v, suppose that f and a κ are as in Theorem 1.15 and define I [u,v = Z v u s − α 1 −α ds = 1 −α 1 −2α v 1 −2α 1 −α − u 1 −2α 1 −α . Then the family T[κu, κv − κv − u a κ κ0 satisfies a large deviation principle with speed a κ b κ and rate function I [u,v t =    1 2 I [u,v t 2 if u 0 or t ¶ 1 c I [0,v f 0, 1 c f 0 t − 1 2 I [0,v 1 c f 0 2 if u = 0 and t ¾ 1 c I [0,v f 0. Proof. Denoting by Λ κ the logarithmic moment generating function of b κ T [κu, κv − κv − u, observe that Λ κ θ = log E exp θ b κ T [ κu, κv − κv − u = X w ∈S∩[κu,κv log E exp θ b κ T [w] − θ κb κ v − u = X w ∈S∩[κu,κv ξ θ b κ ¯ f w − θ κb κ v − u = Z I κ ¯ f w ξ θ b κ ¯ f w d w − θ κb κ v − u, 22 where I κ = {w ¾ 0 : ιw ∈ [κu, κv} and ιw = max S∩[0, w]. Since κu ¶ inf I κ κu+ f 0 −1 and κv ¶ sup I κ κv + f 0 −1 we get Λ κ θ − Z I κ ¯ f w ξ θ b κ ¯ f w − θ b κ d w ¶ 2 θ b κ f 0 . 23 1253 Now focus on the case u 0. A Taylor approximation gives ξw = w + 1 2 1 + o1w 2 , as w ↓ 0. By dominated convergence, Z I κ ¯ f w ξ θ b κ ¯ f w − θ b κ d w ∼ 1 2 Z I κ 1 ¯ f w d w × θ 2 b 2 κ ∼ 1 2 κ 1 −2α 1 −α ¯ ℓκ Z v u w − α 1 −α d w × θ 2 b 2 κ = a κ b κ 1 2 I [u,v θ 2 . Together with 23 we arrive at Λ κ θ ∼ a κ b κ 1 2 I [u,v θ 2 . Now the Gärtner-Ellis theorem implies that the family T [ κu, κv − κv − ua κ satisfies a large deviation principle with speed a κ b κ having as rate function the Fenchel-Legendre transform of 1 2 I [u,v θ 2 which is I [u,v . Next, we look at the case u = 0. If θ ¾ 1 c f 0 then Λ κ θ = ∞ for all κ 0, so assume the contrary. The same Taylor expansion as above now gives ¯ f w ξ θ b κ ¯ f w − θ b κ ∼ 1 2 θ 2 b 2 κ ¯ f w as w ↑ ∞. In particular, the integrand in 22 is regularly varying with index − α 1 −α −1 and we get from Karamata’s theorem, see e.g. [Bingham et al., 1987, Theorem 1.5.11], that Λ κ θ ∼ 1 2 θ 2 b 2 κ κ 1 −2α 1 −α ¯ ℓκ Z v s −α1−α ds = a κ b κ 1 2 I [0,v θ 2 . 24 Consequently, lim κ→∞ 1 a κ b κ Λ κ θ = 1 2 I [0,v θ 2 if θ 1 c f 0, ∞ otherwise. The Legendre transform of the right hand side is I [0,v t = 1 2 I [0,v t 2 if t ¶ 1 c I [0,v f 0, 1 c f 0 t − 1 2 I [0,v 1 c f 0 2 if t ¾ 1 c I [0,v f 0. Since I [0,v is not strictly convex the Gärtner-Ellis Theorem does not imply the full large deviation principle. It remains to prove the lower bound for open sets t, ∞ with t ¾ 1 c I [0,v f 0. Fix ǫ ∈ 0, u and note that, for sufficiently large κ, P T [κu, κv − κva κ t ¾ P T [κǫ, κv − κv − ǫa κ 1 c I [0,v f 0 × P T 0, κǫ − κǫa κ −ǫ | {z } →1 P T [0] a κ t − 1 c I [0,v f 0 + ǫ . 1254 so that by the large deviation principle for T [κǫ,κv −κv −ǫa κ and the exponential distribution it follows that lim inf κ→∞ 1 a κ b κ log P T [0, κv − κva κ t ¾ − 1 c I [0,v f 0 2 2 I [ǫ,v − t − 1 c I [0,v f 0 + ǫ 1 c f 0. Note that the right hand side converges to −I [0,v t when letting ǫ tend to zero. This establishes the full large deviation principle for T [0, κv − κva κ . ƒ We continue the proof of Theorem 1.15 with a finite-dimensional moderate deviation principle, which can be derived from Lemma 4.12. Lemma 4.13. Fix 0 = t t 1 · · · t p . Then the vector 1 a κ Z κt j − κt j : j ∈ {1, . . . , p} satisfies a large deviation principle in R p with speed a κ b κ and rate function I a 1 , . . . , a p = p X j=1 I [t j −1 ,t j a j −1 − a j , with a := 0 . Proof. We note that, for −∞ ¶ a j b j ¶ ∞, we have interpreting conditions on the right as void, if they involve infinity P a j a κ ¶ Z κt j − κt j b j a κ for all j = P T [0, κt j + a κ a j ¶ κ t j , T [0, κt j + a κ b j κ t j for all j . To continue from here we need to show that the random variables T [0, κt + a κ b and T [0, κt+ a κ b are exponentially equivalent in the sense that lim κ→∞ a −1 κ b −1 κ log P T [0, κt + a κ b − T [0, κt − a κ b a κ ǫ = −∞ . 25 Indeed, first let b 0. As in Lemma 4.12, we see that for any t ¾ 0 and θ ∈ R, a −1 κ b −1 κ log E exp θ b κ T [ κt, κt + a κ b − a κ b −→ 0, 26 Chebyshev’s inequality gives, for any A 0, P T [0, κt + a κ b − T [0, κt − a κ b a κ ǫ ¶ e −Aa κ b κ E exp A ǫ b κ T [ κt, κt + a κ b − a κ b . A similar estimate can be performed for PT [0, κt + a κ b − T [0, κt − a κ b −a κ ǫ, and the argu- ment also extends to the case b 0. From this 25 readily follows. Using Lemma 1.15 and independence, we obtain a large deviation principle for the vector 1 a κ T [ κt j −1 , κt j − κ t j − t j −1 : j ∈ {1, . . . , p} , 1255 with rate function I 1 a 1 , . . . , a p = p X j=1 I [t j −1 ,t j a j . Using the contraction principle, we infer from this a large deviation principle for the vector 1 a κ T [0, κt j − κ t j : j ∈ {1, . . . , p} with rate function I 2 a 1 , . . . , a p = p X j=1 I [t j −1 ,t j a j − a j −1 . Combining this with 25 we obtain that a −1 κ b −1 κ log P T [0, κt j + a κ a j ] κ t j , T [0, κt j + a κ b j ] κ t j for all j ∼ a −1 κ b −1 κ log P − a κ b j T [0, κt j ] − κ t j −a κ a j for all j , and observing the signs the required large deviation principle. ƒ We may now take a projective limit and arrive at a large deviation principle in the space P 0, ∞ of functions x : 0, ∞ → R equipped with the topology of pointwise convergence. Lemma 4.14. The family of functions 1 a κ Z κt − κt : t κ0 satisfies a large deviation principle in the space P 0, ∞, with speed a κ b κ and rate function I x = ¨ 1 2 R ∞ ˙ x t 2 t α 1 −α d t − 1 c f 0 x if x is absolutely continuous and x ¶ 0. ∞ otherwise. Proof. Observe that the space of functions equipped with the topology of pointwise convergence can be interpreted as the projective limit of R p with the canonical projections given by πx = xt 1 , . . . , xt p for 0 t 1 . . . t p . By the Dawson-Gärtner theorem, we obtain a large deviation principle with rate function ˜Ix = sup t 1 ...t p p X j=2 I [t j −1 ,t j x t j −1 − x t j + I [0,t 1 − x t 1 . Note that the value of the variational expression is nondecreasing, if additional points are added to the partition. We first fix t 1 0 and optimize the first summand independently. Observe that sup t 1 ...t p p X j=2 I [t j −1 ,t j x t j −1 − x t j = 1 2 sup t 1 t 2 ...t p p X j=2 x t j − x t j −1 2 1 −α 1 −2α t 1 −2α 1 −α j − t 1 −2α 1 −α j −1 . Recall that t j − t j −1 t −α 1 −α j ¶ 1 −α 1 −2α t 1 −2α 1 −α j − t 1 −2α 1 −α j −1 ¶ t j − t j −1 t −α 1 −α j −1 . 1256 Hence we obtain an upper and [in brackets] lower bound of 1 2 sup t 1 t 2 ...t p p X j=2 x t j − x t j −1 t j − t j −1 2 t α 1 −α j[ −1] t j − t j −1 . It is easy to see that using arguments analogous to those given in the last step in the proof of the first large deviation principle that this is + ∞ if x fails to be absolutely continuous, and otherwise it equals 1 2 Z ∞ t 1 ˙ x t 2 t α 1 −α d t. In the latter case we have ˜Ix = lim t 1 ↓0 1 2 Z ∞ t 1 ˙ x t 2 t α 1 −α d t + I [0,t 1 − x t 1 . If x 0 the last summand diverges to infinity. If x = 0 and the limit of the integral is finite, then using Cauchy-Schwarz, I [0,t 1 − x t 1 ¶ 1 2 I −1 [0,t 1 Z t 1 ˙ x t d t 2 ¶ 1 2 Z ǫ ˙ x t 2 t α 1 −α d t, hence it converges to zero. If x 0, lim t 1 ↓0 I [0,t 1 − x t 1 = lim t 1 ↓0 − 1 c f 0 x t 1 + 1 −α 1 −2α t α 1 −α 1 1 c f 0 2 = − 1 c f 0 x , as required to complete the proof. ƒ Lemma 4.15. If c ∞, the function I is a good rate function on L 0, ∞. Proof. Recall that, by the Arzelà-Ascoli theorem, it suffices to show that for any η 0 the family {x : Ix ¶ η} is bounded and equicontinuous on every compact subset of 0, ∞. Suppose that Ix ¶ η and 0 s t. Then, using Cauchy-Schwarz in the second step, |x t − x s | = Z t s ˙ x u du ¶ Z t s |˙x u | u α 21 −α u − α 21 −α du ¶ Z t s ˙ x u 2 u α 1 −α du 1 2 Z t s u − α 1 −α du 1 2 ¶ q η 1 −α 1 −2α t 1 −2α 1 −α − s 1 −2α 1 −α 1 2 , which proves equicontinuity. The boundedness condition follows from this, together with the obser- vation that 0 ¾ x ¾ −cη f 0. ƒ To move our moderate deviation principle to the topology of uniform convergence on compact sets, recall the definition of the mappings f m from 21. We abbreviate ¯ Z κ := 1 a κ Z κt − κt : t . 1257 Lemma 4.16. f m ¯ Z κ m ∈N are exponentially good approximations of ¯ Z κ on L 0, ∞. Proof. We need to verify that, denoting by k · k the supremum norm on any compact subset of 0, ∞, for every δ 0, lim m →∞ lim sup κ→∞ a −1 κ b −1 κ log P k ¯Z κ − f m ¯ Z κ k δ = −∞. The crucial step is to establish that, for sufficiently large κ, for all j ¾ 2, P sup t j −1 ¶ t t j ¯ Z κ t − ¯Z κ t j −1 δ ¶ 2 P ¯ Z κ t j − ¯Z κ t j −1 δ 2 . 27 To verify 27 we use the stopping time τ := inf{t ¾ t j −1 : | ¯Z κ t − ¯Z κ t j −1 | δ}. Note that P ¯ Z κ t j − ¯Z κ t j −1 δ 2 ¾ P sup t j −1 ¶t t j ¯ Z κ t − ¯Z κ t j −1 δ P ¯ Z κ t j − ¯Z κ t j −1 δ 2 τ ¶ t j , and, using Chebyshev’s inequality in the last step, P ¯ Z κ t j − ¯Z κ t j −1 δ 2 τ ¶ t j ¾ P ¯ Z κ t j − ¯Z κ τ ¶ δ 2 τ ¶ t j ¾ 1 − 4 δ 2 Var ¯ Z κ t j −t j −1 . As this variance is of order a −2 κ κ 1 −2α 1 −α ¯ ℓκ −1 → 0, the right hand side exceeds 1 2 for sufficiently large κ, thus proving 27. With 27 at our disposal, we observe that, for some integers n 1 ¾ n ¾ 2 depending only on m and the chosen compact subset of 0, ∞, P k ¯Z κ − f m ¯ Z κ k δ ¶ n 1 X j=n P sup t j −1 ¶t t j ¯ Z κ t − ¯Z κ t j −1 δ ¶ 2 n 1 X j=n P ¯ Z κ t j − ¯Z κ t j −1 δ 2 . Hence, we get lim sup κ→∞ a −1 κ b −1 κ log P k ¯Z κ − f m ¯ Z κ k δ ¶ − n 1 inf j=n I [t j −1 ,t j δ 2 , and the right hand side can be made arbitrarily small by making m = 1 t j −t j −1 large. ƒ Proof of Theorem 1.15. We apply [Dembo and Zeitouni, 1998, Theorem 4.2.23] to transfer the large deviation principle from the topological Hausdorff space P 0, ∞ to the metrizable space L 0, ∞ using the sequence f m of continuous functions. There are two conditions to be checked for this, on the one hand that f m ¯ Z κ m ∈N are exponentially good approximations of ¯ Z κ , as verified in Lemma 4.16, on the other hand that lim sup m →∞ sup I x¶ η d f m x, x = 0, for every η 0, where d denotes a suitable metric on L 0, ∞. This follows easily from the equicontinuity of the set {Ix ¶ η} established in Lemma 4.15. Hence the proof is complete. ƒ 1258 5 The vertex with maximal indegree In this section we prove Theorem 1.5 and Proposition 1.18.

5.1 Strong and weak preference: Proof of Theorem 1.5

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52