The large deviation principles

4.2 The large deviation principles

By the exponential equivalence, Proposition 4.4, and by [Dembo and Zeitouni, 1998, Theorem 4.2.13] it suffices to prove the large and moderate deviation principles in the framework of the exponentially equivalent processes 17 constructed in the previous section. The first step in the proof of the first part of Theorem 1.13, is to show a large deviation principle for the occupation times of the underlying process. Throughout this section we denote a κ := κ 1 1−α ¯ ℓκ. We define the function ξ: R → −∞, ∞] by ξu = log 1 1 −u if u 1, ∞ otherwise. Its Legendre-Fenchel transform is easily seen to be ξ ∗ t = t − 1 − log t if t 0, ∞ otherwise. Lemma 4.5. For fixed 0 ¶ u v the family 1 κ T [ κu, κv κ0 satisfies a large deviation principle with speed a κ and rate function Λ ∗ u,v t = sup ζ∈R [tζ − Λ u,v ζ], where Λ u,v ζ = Z v u s α 1 −α ξζs −α1−α ds. Proof. For fixed u v denote by I κ = I [u,v κ = { j ∈ N ∪ {0}: Φ j ∈ [κu, κv}. We get, using S j for the underlying sequence of Exp f j-distributed independent random variables, Λ κ θ := log Ee θ T [κu,κvκ = X j ∈I κ log Ee θ κ S j = X j ∈I κ log 1 1 − θ κ f j = X t ∈ΦI κ ξ θ κ f Φ −1 t = Z ¯I κ f Φ −1 t ξ θ κ f Φ −1 t d t, where ¯I κ = ¯I [u,v κ = S j ∈I κ [Φ j, Φ j + 1. Now choose θ in dependence on κ as θ κ = ζκ 1 1−α ¯ ℓκ with ζ u α1−α . Then Z ¯I κ ¯ f t ξ θ κ κ ¯ f t d t = κ Z ¯I κ κ ¯ f κsξ θ κ κ ¯ f κs ds = κ 1 1−α Z ¯I κ κ s α 1 −α ¯ ℓκsξ ζ¯ℓκ s α 1 −α ¯ ℓκs ds. 1245 Note that inf¯I κ κ and sup¯I κ κ approach the values u and v, respectively. Hence, we conclude with the dominated convergence theorem that one has Λ κ θ κ ∼ κ 1 1−α ¯ ℓκ Z v u s α 1 −α ξ ζ s α 1 −α ds | {z } =Λ u,v ζ as κ tends to infinity. Now the Gärtner-Ellis theorem implies the large deviation principle for the family T [ κu, κv κ0 for 0 u v. It remains to prove the large deviation principle for u = 0. Note that ET [0, κv = E X j ∈I κ S j = Z ¯I κ f Φ −1 t 1 f Φ −1 t d t ∼ κv and varT [0, κv = X j ∈I κ varS j = Z ¯I κ f Φ −1 t 1 f Φ −1 t 2 d t ® 1 f 0 κv. Consequently, T [0, κǫ κ converges in probability to ǫ. Thus for t v P 1 κ T [0, κv ¶ t ¾ P 1 κ T [0, κǫ ¶ 1 + ǫǫ | {z } →1 P 1 κ T [ κǫ, κv ¶ t − 1 + ǫǫ and for sufficiently small ǫ 0 lim inf κ→∞ 1 a κ log P 1 κ T [0, κv ¶ t ¾ −Λ ∗ ǫ,v t − 1 + ǫǫ, while the upper bound is obvious. ƒ The next lemma is necessary for the analysis of the rate function in Lemma 4.5. It involves the function ψ defined as ψt = 1 − t + t log t for t ¾ 0. Lemma 4.6. For fixed 0 x x 1 there exists an increasing function η: R + → R + with lim δ↓0 η δ = 0 such that for any u, v ∈ [x , x 1 ] with δ := v − u 0 and all w ∈ [u, v], t 0 one has Λ ∗ u,v t − w α 1 −α t ψ δ t ¶ η δ δ + t ψ δ t . We now extend the definition of Λ ∗ continuously by setting, for any u ¾ 0 and t ¾ 0, Λ ∗ u,u t = u α 1 −α t. For the proof of Lemma 4.6 we use the following fact, which can be verified easily. Lemma 4.7. For any ζ 0 and t 0, we have |ξ ∗ ζt − ξ ∗ t| ¶ 2|ζ − 1| + | log ζ| + 2|ζ − 1|ξ ∗ t. Proof of Lemma 4.6. First observe that γ δ := sup x uvx 1 v −u ¶ δ vu α 1 −α 1246 tends to 1 as δ tends to zero. By Lemma 4.7, there exists a function ¯ η δ δ0 with lim δ↓0 ¯ η δ = 0 such that for all ζ ∈ [1γ δ , γ δ ] and t 0 |ξ ∗ ζt − ξ ∗ t| ¶ ¯ η δ 1 + ξ ∗ t. Consequently, one has for any δ 0, x w, ¯ w x 1 with |w − ¯ w | ¶ δ and ζ ∈ [1γ δ , γ δ ] that | ¯ w α 1 −α ξ ∗ ζt − w α 1 −α ξ ∗ t| ¶ ¯ w α 1 −α |ξ ∗ ζt − ξ ∗ t| + ξ ∗ t| ¯ w α 1 −α − w α 1 −α | ¶ c ¯ η δ 1 + ξ ∗ t + cδξ ∗ t, where c ∞ is a constant only depending on x , x 1 and α. Thus for an appropriate function η δ δ0 with lim δ↓0 η δ = 0 one gets | ¯ w α 1 −α ξ ∗ ζt − w α 1 −α ξ ∗ t| ¶ η δ 1 + ξ ∗ t. 18 Fix x u v x 1 and set δ := v − u. We estimate, for θ ¾ 0, δu α 1 −α ξθ v −α1−α ¶ Λ u,v θ ¶ δv α 1 −α ξθ u −α1−α , and the reversed inequalities for θ ¶ 0. Consequently, Λ ∗ u,v δt = sup θ [θ t − Λ u,v θ ] ¶ δ sup θ [θ t − u α 1 −α ξθ v −α1−α ] ∨ δ sup θ [θ t − v α 1 −α ξθ u −α1−α ] = δu α 1 −α ξ ∗ vu α 1 −α t ∨ δv α 1 −α ξ ∗ uv α 1 −α t. Since v u α1−α and u v α1−α lie in [1 γ δ , γ δ ] we conclude with 18 that for w ∈ [u, v Λ ∗ u,v δt ¶ w α 1 −α ξ ∗ tδ + η δ 1 + ξ ∗ tδ. To prove the converse inequality, observe Λ ∗ u,v t ¾ δ sup θ ¶0 [θ t − u α 1 −α ξθ v −α1−α ] ∨ δ sup θ ¾0 [θ t − v α 1 −α ξθ u −α1−α ] . Now note that the first partial Legendre transform can be replaced by the full Legendre transform if t ¶ u v α1−α . Analogously, the second partial Legendre transform can be replaced if t ¾ vu α1−α . Thus we can proceed as above if t 6∈ 1γ δ , γ δ and conclude that Λ ∗ u,v t ¾ w α 1 −α ξ ∗ tδ − η δ 1 + ξ ∗ tδ. The latter estimate remains valid on 1 γ δ , γ δ if x α1−α 1 ξ ∗ 1γ δ ∨ξ ∗ γ δ ¶ η δ . Since γ δ tends to 1 and ξ ∗ 1 = 0 one can make η δ a bit larger to ensure that the latter estimate is valid and lim δ↓0 η δ = 0. This establishes the statement. ƒ As the next step in the proof of Theorem 1.13 we formulate a finite-dimensional large deviation principle, which can be derived from Lemma 4.5. 1247 Lemma 4.8. Fix 0 = t t 1 · · · t p . Then the vector 1 κ Z κt j : j ∈ {1, . . . , p} satisfies a large deviation principle in {0 ¶ a 1 ¶ · · · ¶ a p } ⊂ R p with speed a κ and rate function J a 1 , . . . , a p = p X j=1 Λ ∗ a j −1 ,a j t j − t j −1 , with a := 0 . Proof. First fix 0 = a a 1 · · · a p . Observe that, whenever s j −1 s j with s = 0, P 1 κ Z κt j ¾ a j 1 κ Z κs j for j ∈ {1, . . . , p} ¾ P s j − s j −1 1 κ T [a j −1 κ, a j κ ¶ t j − t j −1 for j ∈ {1, . . . , p} . Moreover, supposing that 0 t j − t j −1 − s j − s j −1 ¶ δ for a δ 0, we obtain P a j ¶ 1 κ Z κt j a j + ǫ for j ∈ {1, . . . , p} ¾ P 1 κ Z κt j ¾ a j 1 κ Z κs j and T [a j κ, a j + ǫκ ¾ δ for j ∈ {1, . . . , p} By Lemma 4.5, given ǫ 0 and A 0, we find δ 0 such that, for κ large, P 1 κ T [a j κ, a j + ǫκ δ ¶ e −Aa κ . Hence, for sufficiently small δ we get with the above estimates that lim inf κ→∞ 1 a κ log P a j + ǫ 1 κ Z κt j ¾ a j for j ∈ {1, . . . , p} ¾ lim inf κ→∞ 1 a κ log P s j − s j −1 1 κ T [a j −1 κ, a j κ ¶ t j − t j −1 for j ∈ {1, . . . , p} ¾ − p X j=1 Λ ∗ a j −1 ,a j t j − t j −1 . Next, we prove the upper bound. Fix 0 = a ¶ . . . ¶ a p and 0 = b ¶ . . . ¶ b p with a j b j , and observe that by the strong Markov property of Z t , P b j 1 κ Z κt j ¾ a j for j ∈ {1, . . . , p} = p Y j=1 P b j 1 κ Z κt j ¾ a j b i 1 κ Z κt i ¾ a i for i ∈ {1, . . . , j − 1} ¶ p Y j=1 P 1 κ T [b j −1 κ, a j κ t j − t j −1 ¶ 1 κ T [a j −1 κ, b j κ . Consequently, lim sup κ↑∞ 1 a κ log P b j 1 κ Z κt j ¾ a j for j ∈ {1, . . . , p} ¶ − p X j=1 r j , 1248 where r j =    Λ ∗ b j −1 ,a j t j − t j −1 if a j − b j −1 ¾ t j − t j −1 , Λ ∗ a j −1 ,b j t j − t j −1 if b j − a j −1 ¶ t j − t j −1 , 0, otherwise. Using the continuity of u, v 7→ Λ ∗ u,v t for fixed t, it is easy to verify continuity of each r j of the parameters a j −1 , a j , b j −1 , and b j . Suppose now that a j and b j are taken from a predefined compact subset of R d . Then we have p X j=1 r j − Λ ∗ a j −1 ,a j t j − t j −1 ¶ ϑ max{b j − a j : j = 1, . . . , p } , for an appropriate function ϑ with lim δ↓0 ϑδ = 0... Now the upper bound follows with an obvious exponential tightness argument. ƒ We can now prove a large deviation principle in a weaker topology, by taking a projective limit and simplifying the resulting rate function with the help of Lemma 4.6. Lemma 4.9. On the space of increasing functions with the topology of pointwise convergence the family of functions 1 κ Z κt : t ¾ 0 κ0 satisfies a large deviation principle with speed a κ and rate function J . Proof. Observe that the space of increasing functions equipped with the topology of pointwise convergence can be interpreted as projective limit of the spaces {0 ¶ a 1 ¶ · · · ¶ a p } with the canonical projections given by πx = xt 1 , . . . , xt p for 0 t 1 . . . t p . By the Dawson- Gärtner theorem, we obtain a large deviation principle with good rate function ˜ J x = sup t 1 ...t p p X j=1 Λ ∗ xt j −1 ,xt j t j − t j −1 . Note that the value of the variational expression is nondecreasing, if additional points are added to the partition. It is not hard to see that ˜ J x = ∞, if x fails to be absolutely continuous. Indeed, there exists δ 0 and, for every n ∈ N, a partition δ ¶ s n 1 t n 1 ¶ · · · ¶ s n n t n n ¶ 1 δ such that P n j=1 t n j − s n j → 0 but P n j=1 xt n j − xs n j ¾ δ. Then, for any λ 0, ˜ J x = sup t1...tp λ1,...,λp∈R p X j=1 λ j t j − t j −1 − Λ xt j −1 ,xt j λ j ¾ n X j=1 h − λ t n j − s n j + Z xt n j xs n j u α 1 −α log 1 + λu −α 1 −α du i ¾ −λ n X j=1 t n j − s n j + δ 1 1 −α log 1 + λδ α 1 −α −→ δ 1 1 −α log 1 + λδ α 1 −α , 1249 which can be made arbitrarily large by choice of λ. From now on suppose that x is absolutely continuous. The remaining proof is based on the equation ˜ J x = sup t 1 ...t p p X j=1 t j − t j −1 xt j α 1 −α ψ xt j − xt j −1 t j − t j −1 . 19 Before we prove its validity we apply 19 to derive the assertions of the lemma. For the lower bound we choose a scheme 0 t n 1 · · · t p n , with p depending on n, such that t p n → ∞ and the mesh goes to zero. Define, for t n j −1 ¶ t t n j , x n j t = 1 t n j − t n j −1 Z t n j t n j −1 ˙ x s ds = xt n j − xt n j −1 t n j − t n j −1 . Note that, by Lebesgue’s theorem, x n j t → ˙x t almost everywhere. Hence ˜ J x ¾ lim inf n →∞ Z t n p x α 1 −α t ψ x n j t d t ¾ Z ∞ x α 1 −α t lim inf n →∞ ψ x n j t d t = J x. For the upper bound we use the convexity of ψ to obtain ψ xt j − xt j −1 t j − t j −1 = ψ 1 t j − t j −1 Z t j t j −1 ˙ x t d t ¶ 1 t j − t j −1 Z t j t j −1 ψ ˙ x t d t. Hence ˜ J x ¶ sup t 1 ...t p p X j=1 xt j α 1 −α Z t j t j −1 ψ ˙ x t d t = J x , as required to complete the proof. It remains to prove 19. We fix t ′ and t ′′ with t ′ t ′′ and xt ′ 0, and partitions t ′ = t n · · · t n n = t ′′ with δ n := sup j xt n j − xt n j −1 converging to 0. Assume n is sufficiently large such that η δ n ¶ 1 2 t ′ α 1 −α , with η as in Lemma 4.6. Then, n X j=1 Λ ∗ xt n j −1 ,xt n j t n j − t n j −1 ¾ 1 2 t ′ α 1 −α h n X j=1 t n j − t n j −1 ψ xt n j − xt n j −1 t n j − t n j −1 | {z } ∗ −xt ′′ − xt ′ i , 20 and ∗ is uniformly bounded as long as ˜ J x is finite. On the other hand also the finiteness of the right hand side of 19 implies uniform boundedness of ∗. Hence, either both expressions in 19 1250 are infinite or we conclude with Lemma 4.6 that for an appropriate choice of t n j , sup t ′ =t ···t p =t ′′ p X j=1 Λ ∗ xt j −1 ,xt j t j − t j −1 = lim n →∞ n X j=1 Λ ∗ xt n j −1 ,xt n j t n j − t n j −1 = lim n →∞ n X j=1 t n j − t n j −1 xt n j α 1 −α ψ xt n j − xt n j −1 t n j − t n j −1 = sup t ′ =t ···t p =t ′′ p X j=1 t j − t j −1 xt j α 1 −α ψ xt j − xt j −1 t j − t j −1 . This expression easily extends to formula 19. ƒ Lemma 4.10. The level sets of J are compact in I [0, ∞. Proof. We have to verify the assumptions of the Arzelà-Ascoli theorem. Fix δ ∈ 0, 1, t ¾ 0, and a function x ∈ I [0, ∞ with finite rate J. We choose δ ′ ∈ 0, δ with x t+ δ ′ = 1 2 x t + x t+ δ , denote ǫ = x t+ δ − x t , and observe that J x ¾ Z t+ δ t x α 1 −α s [1 − ˙x s + ˙ x s log ˙ x s ] ds ¾ δ − δ ′ ǫ 2 α 1 −α Z t+ δ t+ δ ′ [1 − ˙x s + ˙ x s log ˙ x s ] ds δ − δ ′ . Here we used that x s ¾ ǫ2 for s ∈ [t + δ ′ , t + δ]. Next, we apply Jensen’s inequality to the convex function ψ to deduce that J x ¾ δ − δ ′ ǫ 2 α 1 −α ψ 1 δ − δ ′ ǫ 2 . Now assume that ǫ 2 ¾ δ. Elementary calculus yields J x ¾ δ ǫ 2 α 1 −α ψ 1 δ ǫ 2 ¾ ǫ 2 1 1 −α log ǫ 2e δ . If we additionally assume ǫ ¾ 2eδ 1 2 , then we get J x log δ − 1 2 1 −α ¾ ǫ. Therefore, in general x t+ δ − x t ¶ max 2 J x log δ − 1 2 1 −α , 2e δ 1 2 . Hence the level sets are uniformly equicontinuous. As x = 0 for all x ∈ I [0, ∞ this implies that the level sets are uniformly bounded on compact sets, which finishes the proof. ƒ We now improve our large deviation principle to the topology of uniform convergence on compact sets, which is stronger than the topology of pointwise convergence. To this end we introduce, for every m ∈ N, a mapping f m acting on functions x : [0, ∞ → R by f m x t = x t j if t j := j m ¶ t j+1 m =: t j+1 . 21 1251 Lemma 4.11. For every δ 0 and T 0, we have lim m →∞ lim sup κ↑∞ 1 a κ log P sup 0¶t¶T f m 1 κ Z κ · t − 1 κ Z κt δ = −∞. Proof. Note that P sup 0¶t¶T f m 1 κ Z κ · t − 1 κ Z κt ¾ δ ¶ T m X j=0 P 1 κ Z κt j+1 − 1 κ Z κt j ¾ δ . By Lemma 4.9 we have lim sup κ↑∞ 1 a κ log P 1 κ Z κt j+1 − 1 κ Z κt j ¾ δ ¶ inf J x: x t j+1 − x t j ¾ δ , and, by Lemma 4.10, the right hand side diverges to infinity, uniformly in j, as m ↑ ∞. ƒ Proof of the first large deviation principle in Theorem 1.13. We apply [Dembo and Zeitouni, 1998, Theorem 4.2.23], which allows to transfer the large deviation principle from the topolog- ical Hausdorff space of increasing functions with the topology of pointwise convergence, to the metrizable space I [0, ∞ by means of the sequence f m of continuous mappings approximating the identity. Two conditions need to be checked: On the one hand, using the equicontinuity of the sets {Ix ¶ η} established in Lemma 4.10, we easily obtain lim sup m →∞ sup J x ¶ η d f m x, x = 0, for every η 0, where d denotes a suitable metric on I [0, ∞. On the other hand, by Lemma 4.11, we have that f m 1 κ Z κ · are a family of exponentially good approximations of 1 κ Z κ · . ƒ The proof of the second large principle can be done from first principles. Proof of the second large deviation principle in Theorem 1.13. For the lower bound observe that, for any T 0 and ǫ 0, P sup 0¶t¶T | 1 κ Z κt − t − a + | ǫ ¾ P sup 0¶t¶T | 1 κ Z κt − t − a + | ǫ, Z κa = 0 ¾ P Z κa = 0 P sup a¶t¶T | 1 κ Z κt − Z κa − t − a| ǫ , and recall that the first probability on the right hand side is exp {−κ a f 0} and the second converges to one, by the law of large numbers. For the upper bound note first that, by the first large deviation principle, for any ǫ 0 and closed set A ⊂ {Jx ǫ}, lim sup κ↑∞ 1 κ log P 1 κ Z κ · ∈ A = −∞. 1252 Note further that, for any δ 0 and T 0, there exists ǫ 0 such that Jx ¶ ǫ implies sup 0¶t¶T |x − y| δ, where y t = t − a + for some a ∈ [0, T ]... Then, for θ f 0, P sup 0¶t¶T | 1 κ Z κt − y| ¶ δ ¶ P Z κa ¶ δκ = P T [0, κδ] ¾ κa ¶ e −κaθ Y Φ j¶κδ E exp θ S j = e −κaθ exp X Φ j¶κδ log 1 1 − θ f j , and the result follows because the sum on the right is bounded by a constant multiple of κδ. ƒ

4.3 The moderate deviation principle

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52