Absolute continuity of the law of M

2.2 Absolute continuity of the law of M

∞ In the sequel, we consider the martingale M t t¾s,t ∈T given by Z[s, t] − t − s for a fixed s ∈ T in the case of strong preference. We denote by M ∞ the limit of the martingale. Proposition 2.2. If f is concave, then the distribution of M ∞ is absolutely continuous with respect to Lebesgue measure. Proof. For ease of notation, we denote Y t = Z[s, t], for t ∈ T, t ¾ s. Moreover, we fix c 0 and let A t denote the event that Y u ∈ [u − c, u + c] for all u ∈ [s, t] ∩ T. Now observe that for two neighbours v − and v in S P {Y t+∆t = v} ∩ A t = 1 − ¯fv ∆t P {Y t = v} ∩ A t + ¯ f v − ∆t P {Y t = v − } ∩ A t . 9 Again we use the notation ∆t = 1 Ψ −1 t . Moreover, we denote ∆ ¯ f v = ¯ f v − ¯fv − . In the first step of the proof we derive an upper bound for ht = max v ∈S P {Y t = v} ∩ A t for t ∈ T, t ¾ s. With 9 we conclude that P {Y t+∆t = v} ∩ A t ¶ 1 − ∆ ¯fv ∆t ht. For w ¾ 0 we denote ςw = max S ∩ [0, w]. Due to the concavity of f , we get that ht + ∆t ¶ 1 − ∆ ¯fςt + c + 1 ∆t ht. Consequently, ht ¶ Y u ∈[s,t∩T 1 − ∆ ¯fςu + c + 1 ∆u and using that log1 + x ¶ x we obtain ht ¶ exp − X u ∈[s,t∩T ∆ ¯ f ςu + c + 1 ∆u . 10 We continue with estimating the sum Σ in the latter exponential: Σ = X u ∈[s,t∩T ∆ ¯ f ςu + c + 1 ∆u ¾ Z t s ∆ ¯ f ςu + c + 1 du. Next, we denote by f lin the continuous piecewise linear interpolation of f | N . Analogously, we set Φ lin v = R v 1 f lin u du and ¯ f lin v = f lin ◦ Φ lin −1 v. Using again the concavity of f we conclude that Z t s ∆ ¯ f ςu + c + 1 du ¾ Z t s f lin ′ Φ −1 u + c + 1 du, and that f lin ¾ f ⇒ Φ lin ¶ Φ ⇒ Φ lin −1 ¾ Φ −1 ⇒ f lin ′ ◦ Φ lin −1 ¶ f lin ′ ◦ Φ −1 . 1235 Hence, Σ ¾ Z t s f lin ′ Φ −1 u + c + 1 du ¾ Z t s f lin ′ ◦ Φ lin −1 u + c + 1 du. For Lebesgue almost all arguments one has ¯ f lin ′ = f lin ◦ Φ lin −1 ′ = f lin ′ ◦ Φ lin −1 · Φ lin −1 ′ = f lin ′ ◦ Φ lin −1 · f lin ◦ Φ lin −1 so that f lin ′ ◦ Φ lin −1 = ¯ f lin ′ ¯ f lin = log ¯ f lin ′ . Consequently, Σ ¾ log ¯ f lin t + c + 1 − log ¯f lin s + c + 1 Using that f lin ¾ f and Φ lin −1 ¾ Φ −1 we finally get that Σ ¾ log ¯ f t + c + 1 − log c ∗ , where c ∗ is a positive constant not depending on t. Plugging this estimate into 9 we get ht ¶ c ∗ ¯ f t + c + 1 . Fix now an interval I ⊂ R of finite length and note that P {M t ∈ I} ∩ A t = P {Y t ∈ t − s + I} ∩ A t ¶ [t − s + I ∩ S ∩ A t ] · ht. Now t − s + I ∩ S ∩ A t is a subset of [t − c, t + c] and the minimal distance of two distinct elements is bigger than 1 ¯ f t+c . Therefore, [t − s + I ∩ S ∩ A t ] ¶ |I| ¯ft + c + 1, and P {M t ∈ I} ∩ A t ¶ c ∗ |I| + c ∗ ¯ f t + c . Moreover, for any open and thus immediately also for any arbitrary interval I one has P {M ∞ ∈ I} ∩ A ∞ ¶ lim inf t →∞ P {M t ∈ I} ∩ A t ¶ c ∗ |I|, where A ∞ = T t ∈[s,∞∩T A t . Consequently, the Borel measure µ c on R given by µ c E = E [1l A ∞ 1l E M ∞ ], is absolutely continuous with respect to Lebesgue measure. The distribution µ of M ∞ , i.e. µE = E[1l E M ∞ ], can be written as monotone limit of the absolutely continuous measures µ c , as c ↑ ∞, and it is therefore also absolutely continuous. ƒ 3 The empirical indegree distribution In this section we prove Theorem 1.1. For k ∈ N ∪ {0} and n ∈ N let µ k n = E[X k n] and µn = µ k n k ∈N∪{0} . We first prove part a, i.e. that X n converges almost surely to µ, as n → ∞, in the total variation norm. To do this we associate the sequence µn n ∈N to a time inhomogeneous Markov chain on N ∪ {0}, which has µ as invariant measure. Then a coupling argument proves convergence of µn to µ, as n → ∞. Finally, the almost sure convergence of X n is verified by a mass concentration argument based on the Chernoff inequality. We then prove part b, i.e. that the outdegree of new vertices is asymptotically Poisson with inten- sity 〈µ, f 〉. Here we derive and analyze a difference equation for the total sum of indegrees in the linear model, see 14. The general result is then obtained by a stochastic domination argument. 1236

3.1 Proof of Theorem 1.1 a

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52