Exponentially good approximation getdocd1be. 1341KB Jun 04 2011 12:05:00 AM

4.1 Exponentially good approximation

In order to analyze the large deviations of the process Z[s, · ] or Z [m, ·, ] we use an approximating process. We first do this on the level of occupation measures. For s ∈ T and 0 ¶ u v we define T s [u, v = sup{t ′ − t : Z[s, t] ¾ u, Z[s, t ′ ] v, t, t ′ ∈ T} to be the time the process Z[s, ·] spends in the interval [u, v. Similarly, we denote by T s [u] the time spent in u. Moreover, we denote by T [u] u ∈S a family of independent random variables with each entry T [u] being Exp f u-distributed, and denote T [u, v := X w ∈S u¶w v T [w] for all 0 ¶ u ¶ v. The following lemma shows that T [u, v is a good approximation to T s [u, v in many cases. Lemma 4.1. Fix η 1 ∈ 0, 1, let s ∈ T and denote by τ the entry time into u of the process Z[s, ·]. One can couple T s [u] u ∈S and T [u] u ∈S such that, almost surely, 1l { ¯fu∆τ¶η 1 } |T s [u] − T [u]| ¶ 1 ∨ η 2 ¯ f u∆ τ, where η 2 is a constant only depending on η 1 . Proof. We fix t ∈ T with ¯fu∆t ¶ η 1 . Note that it suffices to find an appropriate coupling conditional on the event {τ = t}. Let U be a uniform random variable and let F and ¯ F denote the conditional distribution functions of T [u] and T s [u], respectively. We couple T [u] and T s [u] by setting T [u] = F −1 U and T s [u] = ¯ F −1 U, where ¯ F −1 denotes the right continuous inverse of ¯ F . The variables T [u] and T s [u] satisfy the assertion of the lemma if and only if F v − 1 ∨ η 2 ¯ f u∆t ¶ ¯ F v ¶ F v + 1 ∨ η 2 ¯ f u∆t for all v ¾ 0. 16 We compute 1 − ¯ F v = Y t¶w,w+∆w¶t+v w ∈T 1 − ¯fu∆w = exp X t¶w,w+∆w¶t+v u ∈T log 1 − ¯fu∆w Next observe that, from a Taylor expansion, for a suitably large η 2 0, we have − ¯fu∆w − η 2 ¯ f u 2 [∆w] 2 ¶ log 1 − ¯fu∆w ¶ − ¯fu∆w, so that 1 − ¯ F v ¶ exp − ¯fu X t¶w,w+∆w¶t+v w ∈T ∆w ¶ exp − ¯fuv − ∆t = 1 − Fv − ∆t. This proves the left inequality in 16. It remains to prove the right inequality. Note that 1 − ¯ F v ¾ exp − X t¶w,w+∆w¶t+v w ∈T ¯ f u∆w + η 2 ¯ f u 2 [∆w] 2 1242 and X t¶w,w+∆w¶t+v w ∈T [∆w] 2 ¶ ∞ X m=[∆t] −1 1 m 2 ¶ 1 [∆t] −1 − 1 ¶ ∆t. Consequently, 1 − ¯ F v ¾ exp {− ¯fuv + η 2 ¯ f u∆t } = 1 − Fv + η 2 ¯ f u∆t. ƒ As a direct consequence of this lemma we obtain an exponential approximation... Lemma 4.2. Suppose that, for some η 1 we have f j ¶ η j + 1 for all j ∈ N ∪ {0}. If ∞ X j=0 f j 2 j + 1 2 ∞, then for each s ∈ T one can couple T s with T such that, for all λ ¾ 0, P sup u ∈S |T s [0, u − T [0, u| ¾ λ + p 2K ¶ 4 e − λ2 2K , where K 0 is a finite constant only depending on f . Proof. Fix s ∈ T and denote by τ u the first entry time of Z[s, ·] into the state u ∈ S. We couple the random variables T [u] and T s [u] as in the previous lemma and let, for v ∈ S, M v = X u ∈S u v T s [u] − T [u] = T s [0, v − T [0, v. Then M v v ∈S is a martingale. Moreover, for each v = Φ j ∈ S one has τ v ¾ Ψ j + 1 so that ∆τ v ¶ 1 j + 1. Consequently, using the assumption of the lemma one gets that ∆τ v ¯ f v ¶ 1 j + 1 f j =: c v ¶ η 1. Thus by Lemma 4.1 there exists a constant η ′ ∞ depending only on f 0 and η such that the increments of the martingale M v are bounded by |T s [v] − T [v]| ¶ η ′ c v . By assumption we have K := P v ∈S c 2 v ∞ an we conclude with Lemma A.4 that for λ ¾ 0, P sup u ∈S |T s [0, u − T [0, u| ¾ λ + p 2K ¶ 4 e − λ2 2K . ƒ We define Z t t ¾ 0 to be the S-valued process given by Z t := max {v ∈ S : T [0, v ¶ t}, 17 and start by observing its connection to the indegree evolution. The following corollary holds in full generality, in particular without assumption 1. 1243 Corollary 4.3. In distribution on the Skorokhod space, we have lim s ↑∞ Z[s, s + t] t ¾ 0 = Z t t ¾ 0 . Proof. Recall that Lemma 4.1 provides a coupling between T s [u] u ∈S and T [u] u ∈S for any fixed s ∈ T. We may assume that the coupled random variables ¯ T s [u] u ∈S and ¯ T [u] u ∈S are defined on the same probability space for all s ∈ T though this does not respect the joint distributions of T s [u] u ∈S for different values of s ∈ T. Denote by ¯Z[s, · ] s ∈T and ¯ Z t the corresponding processes such that ¯ T s [0, u + s = s + P v u ¯ T s [v] and ¯ T [0, u = P v u ¯ T [v] are the entry times of ¯ Z[s, s + t] and ¯ Z t into the state u ∈ S. By Lemma 4.1 one has that, almost surely, lim s ↑∞ ¯ T s [0, u = ¯ T [0, u and therefore one obtains almost sure convergence of ¯ Z[s, s + t] t¾0 to ¯ Z t t¾0 in the Skorokhod topology, which implies the stated convergence in distribution. ƒ Proposition 4.4. Uniformly in s, the processes • 1 κ Z κt : t ¾ 0 κ0 and 1 κ Z[s, s + κt]: t ¾ 0 κ0 ; • 1 a κ Z κt − κt: t ¾ 0 κ0 and 1 a κ Z[s, s + κt] − κt: t ¾ 0 κ0 , are exponentially equivalent on the scale of the large, respectively, moderate deviation principles. Proof. We only present the proof for the first large deviation principle of Theorem 1.13 since all other statements can be inferred analogously. We let U δ x denote the open ball around x ∈ I [0, ∞ with radius δ 0 in an arbitrarily fixed metric d generating the topology of uniform convergence on compacts, and, for fixed η 0, we cover the compact set K = {x ∈ I [0, ∞: Ix ¶ η} with finitely many balls U δ x x ∈I , where I ⊂ K. Since every x ∈ I is continuous, we can find ǫ 0 such that for every x ∈ I and increasing and right continuous τ : [0, ∞ → [0, ∞ with |τt − t| ¶ ǫ, y ∈ U δ x ⇒ y τ· ∈ U 2 δ x. For fixed s ∈ T we couple the occupation times T s [0, u u ∈S and T [0, u u ∈S as in Lemma 4.2, and hence implicitly the evolutions Z[s, t] t¾s and Z t t¾0 ... Next, note that Z[s, s + · ] can be transformed into Z · by applying a time change τ with |τt − t| ¶ sup u ∈S |T s [0, u − T [0, u|. Consequently, P d 1 κ Z[s, s + κ · ], 1 κ Z κ· ¾ 3 δ ¶ P 1 κ Z κ· 6∈ [ x ∈I U δ x + P sup u ∈S | ¯ T s [0, u − ¯ T [0, u | ¾ κǫ , and an application of Lemma 4.2 gives a uniform upper bound in s, namely lim sup κ→∞ sup s ∈S 1 κ 1 1 −α ¯ ℓκ log P d 1 κ Z[s, s + κ · ], 1 κ Z κ· ¾ 3 δ ¶ −η. Since η and δ 0 were arbitrary this proves the first statement. ƒ 1244

4.2 The large deviation principles

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52