Strong and weak preference: Proof of Theorem 1.5

5 The vertex with maximal indegree In this section we prove Theorem 1.5 and Proposition 1.18.

5.1 Strong and weak preference: Proof of Theorem 1.5

The key to the proof is Proposition 5.1 which shows that, in the strong preference case, the degree of a fixed vertex can only be surpassed by a finite number of future vertices. The actual formulation of the result also contains a useful technical result for the weak preference case. Recall that ϕ t = R t 1 ¯ f v d v, and let ts = sup {t ∈ S: 4ϕ t ¶ s }, for s ¾ 0. Moreover, we let ϕ ∞ = lim t →∞ ϕ t , which is finite exactly in the strong preference case. In this case ts = ∞ eventually. Proposition 5.1. For any fixed η 0, almost surely only finitely many of the events A s := ∃t ′ ∈ [s, ts ∩ T : Z[s, t ′ ] ¾ t ′ − η , for s ∈ T, occur. For the proof we identify a family of martingales and then apply the concentration inequality for martingales, Lemma A.3. For s ∈ T, let ¯ T s u u ∈S be given by ¯ T s u = u − T s [0, u, where T s [u, v is the time spent by the process Z[s, · ] in the interval [u, v. The following lemma is easy to verify. Lemma 5.2. Let t i i ∈N∪{0} be a strictly increasing sequence of nonnegative numbers with t = 0 and lim i →∞ t i = ∞. Moreover, assume that λ 0 is fixed such that λ ∆t i := λ t i − t i −1 ¶ 1, for all i ∈ N, and consider a discrete random variable X with P X = t i = λ∆t i i −1 Y j=1 1 − λ∆t j for i ∈ N. Then E [X ] = 1 λ and varX ¶ 1 λ 2 . With this at hand, we can identify the martingale property of ¯ T s u u ∈S . Lemma 5.3. For any s ∈ S, the process ¯ T s u u ∈S is a martingale with respect to the natural filtra- tion G u . Moreover, for two neighbours u u + in S, one has var ¯ T s u + | G u ¶ 1 ¯ f u 2 . 1259 Proof. Fix two neighbours u u + in S and observe that given G u or given the entry time T s [0, u+s into state u the distribution of T s [u] is as in Lemma 5.2 with λ = ¯ f u. Thus the lemma implies that E [ ¯ T s u+ |G u ] = ¯ T s u + 1 f u − E[T s [u] | G u ] = ¯ T s u so that ¯ T s u is a martingale. The variance estimate of Lemma 5.2 yields the second assertion. ƒ Proof of Proposition 5.1. We fix η ¾ 1 f 0 and u ∈ S with ¯fu ¾ 2. We consider PA s for sufficiently large s ∈ T. More precisely, s needs to be large enough such that ts ¾ u and s − η − u ¾ p s 2. We denote by σ the first time t in T for which Z[s, t] ¾ t − η, if such a time exists, and set σ = ∞ otherwise. We now look at realizations for which σ ∈ [s, ts or, equivalently, A s occurs. We set ν = Z[s, σ]. Since the jumps of Z[s, ·] are bounded by 1 f 0 we conclude that ν ¶ σ − η + 1 f 0 ¶ σ. Conversely, T s [0, ν + s is the entry time into state ν and thus equal to σ; therefore, ν = Z[s, σ] ¾ T s [0, ν + s − η, and thus ¯ T s ν = ν − T s [0, ν ¾ s − η. Altogether, we conclude that A s ⊂ ∃u ∈ [0, ts ∩ S: ¯ T s u ¾ s − η . By Lemma 5.3 the process ¯ T s u u ∈S is a martingale... Moreover, for consecutive elements u u + of S that are larger than u , one has var ¯ T s u+ |G u = 1 ¯ f u 2 , ¯ T s u+ − ¯ T s u ¶ 1 ¯ f u ¶ 1 2 , and ¯ T s u ¶ u . Now we apply the concentration inequality, Lemma A.3, and obtain, writing λ s = s − η − u − p 2 ϕ ts ¾ 0, that P A s ¶ P sup u ∈[0,ts∩S ¯ T s u ¾ s − η ¶ P sup u ∈[u ,ts ∩S ¯ T s u − ¯ T s u ¾ s − η − u ¶ 2 exp − λ 2 s 2 ϕ ts + λ s 6 , where we use that X u ∈S∩[0,ts 1 ¯ f u 2 = ϕ ts . As ϕ ts ¶ s 4, we obtain lim sup − 1 s log PA s ¾ 6 5 . Denoting by ιt = max[0, t] ∩ T, we finally get that X s ∈T P A s ¶ Z ∞ e s P A ιs ds ∞, so that by Borel-Cantelli, almost surely, only finitely many of the events A s s ∈T occur. ƒ 1260 Proof of Theorem 1.5. We first consider the weak preference case and fix s ∈ T. Recall that Z[s, t] − t − s t¾s and Z[0, t] − t t¾0 are independent and satisfy functional central limit the- orems see Theorem 1.12. Thus Z[s, t] − Z[0, t] t¾s also satisfies a central limit theorem, i.e. an appropriately scaled version converges weakly to the Wiener process. Since the Wiener process changes its sign almost surely for arbitrarily large times, we conclude that Z[s, t] will be larger, respectively smaller, than Z[0, t] for infinitely many time instances. Therefore, s is not a persistent hub, almost surely. This proves the first assertion. In the strong preference case recall that ϕ ∞ ∞. For fixed η 0, almost surely, only finitely many of the events A s s ∈T occur, by Proposition 5.1. Recalling that Z[0, t] − t has a finite limit, we thus get that almost surely only finitely many degree evolutions overtake the one of the first node. It remains to show that the limit points of Z[s, t] − t for varying s ∈ T are almost surely distinct. But this is an immediate consequence of Proposition 2.2. ƒ

5.2 The typical evolution of the hub: Proof of Proposition 1.18

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52