x xµ xdx getdoc0885. 605KB Jun 04 2011 12:04:03 AM

by using 5.10. Recall that the eigenvalues are ordered, λ 1 λ 2 . . . λ N . Let L ≤ N − n n was defined in 4.15 and define Π L λ := {λ L+1 , λ L+2 , . . . λ L+n } and Π c L λ := {λ 1 , λ 2 , . . . λ N } \ Π L λ its complement. For convenience, we will relabel the elements of Π L as x = {x 1 , x 2 , . . . x n } in increasing order. The elements of Π c L will be denoted by Π c L λ := y = y −L , y −L+1 , . . . y −1 , y 1 , y 2 , . . . y N −L−n ∈ Ξ N −n , again in increasing order Ξ was defined in 3.11. We set J L := {−L, −L + 1, . . . , −1, 1, 2, . . . N − L − n} 6.2 to be the index set of the y’s. We will refer to the y’s as external points and to the x j ’s as internal points. Note that the indices are chosen such that for any j we have y k x j for k 0 and y k x j for k

0. In particular, for any fixed L, we can split any y ∈ Ξ

N −n as y = y − , y + where y − := y −L , y −L+1 , . . . y −1 , y + := y 1 , y 2 , . . . y N −L−n The set Ξ N −n with a splitting mark after the L-th coordinate will be denoted by Ξ N −n L and we use the y ∈ Ξ N −n ⇐⇒ y − , y + ∈ Ξ N −n L one-to-one correspondance. For a fixed L we will often consider the expectation of functions O y on Ξ N −n with respect to µ or f µ; this will always mean the marginal probability: E µ O := Z O yuy − , x 1 , x 2 , . . . x n , y + dydx, y = y − , y + . 6.3 E f O := Z O y f uy − , x 1 , x 2 , . . . x n , y + dydx. 6.4 For a fixed L ≤ N − n and y ∈ Ξ N −n let f L y x = f y x = f t

y, x

–Z f t

y, xµ

y dx ™ −1 6.5 be the conditional density of x given y with respect to the conditional equilibrium measure µ L y dx = µ y dx = u y xdx, u y x := uy, x –Z u

y, xdx

™ −1 6.6 Here f L y also depends on time t, but we will omit this dependence in the notation. Note that for any fixed y ∈ Ξ N −n , any value x j lies in the interval I y := [ y −1 , y 1 ], i.e. the functions u y x and f y x are supported on the set Ξ n y := n x = x 1 , x 2 , . . . , x n : y −1 x 1 x 2 . . . x n y 1 o ⊂ I n y . 547 Now we localize the good set Ω introduced in Definition 4.1. For any fixed L and y = y − , y + ∈ Ξ N −n L we define Ω y := {Π L λ : λ ∈ Ω, Π c L λ = y} = {x = x 1 , x 2 , . . . , x n : y − , x, y + ∈ Ω}. Set Ω 1 = Ω 1 L := y ∈ Ξ N −n L : P f y Ω y ≥ 1 − C e −n γ12 . 6.7 Since P Ω = P f P f y Ω y , from 4.19 we have P f Ω 1 ≥ 1 − C e −n γ12 . 6.8 Here P f Ω 1 is a short-hand notation for the marginal expectation, i.e. P f Ω 1 := P f Π c L −1 Ω 1 , but we will neglect this distinction. Note that y ∈ Ω 1 also implies, for large N , that there exists an x ∈ I n y such that y − , x, y + ∈ Ω. This ensures that those properties of λ ∈ Ω that are determined only by y’s, will be inherited to the y’s. E.g. y ∈ Ω 1 will guarantee that the local density of y’s is close to the semicircle law on each interval away from I y . More precisely, note that for any interval I = [E − η ∗ m 2, E + η ∗ m 2] of length η ∗ m = 2 m n γ N −1 and center E, |E| ≤ 2 − κ, that is disjoint from I y , we have, by 4.16, y ∈ Ω 1 , I ∩ I y = ; =⇒ N I N |I| − ̺ sc E ≤ 1 N |I| 1 4 n γ12 . 6.9 Moreover, for any interval I with |I| ≥ n γ N −1 we have, by 4.18, y ∈ Ω 1 , I ∩ I y = ; =⇒ N I ≤ KN|I|. 6.10 For any L with N κ 3 2 ≤ L ≤ N1 − κ 3 2 , let E L = N −1 sc LN −1 , i.e. N Z E L −2 ̺ sc λdλ = L. 6.11 Then we have − 2 + Cκ ≤ E L ≤ 2 − Cκ, ̺ sc E L ≥ cκ 1 2 6.12 Using 4.21 and 4.22 from Lemma 4.3 on the set Ω see 4.18, we for any y ∈ Ω 1 L we have | y −1 − N −1 sc LN −1 | ≤ C n −γ6 , |I y | − n N ̺ sc E L ≤ CN −1 n γ+34 6.13 in particular | y −1 |, | y 1 | ≤ 2 − κ2 and |I y | ≤ C n N 6.14 with C = C κ. Let Ω 2 = Ω 2 L = n y − , y + ∈ Ξ N −n L , : |I y | ≤ KnN −1 o 6.15 with some large constant K. On the set Ω we have |I y | ≤ KnN see 6.14, thus Π c L Ω ⊂ Ω 2 L, i.e. P f Ω 2 ≥ 1 − C e −n γ6 . 6.16 548

6.2 Localization of the Dirichlet form

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52