Bound on the level repulsion and potential for good configurations

Proof. The probability of Ω m was estimated in 4.17. The probability of the second event in 4.18 can be estimated by 4.13 from Proposition 4.2 and from N sc 0 = 12. The third event is treated by the large deviation estimate on N I for any interval I with length |I| ≥ log N 2 N see Theorem 4.6 from [15]; note that there is a small error in the statement of this theorem, since the conditions y ≥ log NN and |I| ≥ log NN should actually be replaced by the stronger assumptions y ≥ log N 2 N and |I| ≥ log N 2 N which are used in its proof: P {N I ≥ KN|I|} ≤ e −c p K N |I| . 4.20 The fourth event is a large deviation of the largest eigenvalue, see, e.g. Lemma 7.4. in [13]. ƒ In case of good configurations, the location of the eigenvalues are close to their equilibrium localition given by the semicircle law. The following lemma contains the precise statement and it will be proven in Appendix C. Lemma 4.3. Let λ 1 λ 2 . . . λ N denote the eigenvalues in increasing order and let κ 0. Then on the set Ω and if N ≥ N κ, it holds that |λ a − N −1 sc aN −1 | ≤ Cκ −12 n −γ6 4.21 for any N κ 3 2 ≤ a ≤ N1 − κ 3 2 recall the definition of N sc from 4.12, and N̺ sc λ a λ b − λ a − b − a ≤ Cκ −12 n γ |b − a| 3 4 + N −1 |b − a| 2 4.22 for any N κ 3 2 ≤ a b ≤ N1 − κ 3 2 and |b − a| ≤ C N n −γ6 .

4.1 Bound on the level repulsion and potential for good configurations

Lemma 4.4. On the set Ω and with the choice n given in 4.15, we have 1 N E 1−κ 3 2 N X ℓ=N κ 3 2 X j 6=ℓ 1 Ω [N λ j − λ ℓ ] 2 ≤ C n 2 γ . 4.23 and 1 N E 1−κ 3 2 N X ℓ=N κ 3 2 X j 6=ℓ 1 Ω N λ ℓ − λ j ≤ C n 2 γ 4.24 with respect to any Wigner ensemble satisfying the conditions 2.4 and 2.5 Proof. First we partition the interval [ −2 + κ, 2 − κ] into subintervals I r = n γ N −1 r − 1 2 , n γ N −1 r + 1 2 , r ∈ Z, |r| ≤ r 1 := 2 − κN n −γ , 4.25 that have already been used in the proof of Lemma 4.3. On the set Ω we have the bound N I r ≤ KN|I r | ≤ C n γ 4.26 540 on the number of eigenvalues in each interval I r . Moreover, the constraint N κ 3 2 ≤ ℓ ≤ N1 − κ 3 2 implies, by 4.21, that |λ ℓ | ≤ 2 − κ for sufficiently small κ, thus λ ℓ ∈ I r with |r| ≤ r 1 . We estimate 4.23 as follows: A := 1 N E 1 Ω ∗ X j ℓ 1 [N λ j − λ ℓ ] 2 = 1 N E 1 Ω X j ℓ X k ∈Z X |r|≤r 1 1 λ ℓ ∈ I r 12 k ≤ N|λ j − λ ℓ | ≤ 2 k+1 [N λ j − λ ℓ ] 2 ≤ 1 N E 1 Ω X |r|≤r 1 X j ℓ X k ∈Z 2 −2k 1 n λ ℓ ∈ I r , 2 k ≤ N|λ j − λ ℓ | ≤ 2 k+1 o 4.27 where the star in the first summation indicates a restriction to N κ 3 2 ≤ j ℓ ≤ 1 − κ 3 2 N . By 4.26, for any fixed r, the summation over ℓ with λ ℓ ∈ I r contains at most C n γ elements. The summation over j contains at most C n γ elements if k 0, since λ ℓ ∈ I r and |λ j − λ ℓ | ≤ 2 k+1 N −1 ≤ N −1 imply that λ j ∈ I r ∪ I r+1 . If k ≥ 0, then the j-summation has at most C2 k + n γ elements since in this case λ j ∈ S {I s : |s − r| ≤ C · 2 k n −γ + 1}. Thus we can continue the above estimate as A ≤ C n 2 γ N X k X |r|≤r 1 2 −2k P n ∃I ⊂ I r −1 ∪ I r ∪ I r+1 : |I| ≤ 2 k+1 N −1 , N I ≥ 2 o + C n γ N X k ≥0 X |r|≤r 1 2 −2k n γ + 2 k . 4.28 The second sum is bounded by C n 3 γ . In the first sum, we use the level repulsion estimate by decomposing I r −1 ∪ I r ∪ I r+1 = S m J m into intervals of length 2 k+2 N −1 that overlap at least by 2 k+1 N −1 , more precisely J m = h n γ N −1 r − 1 − 1 2 + 2 k+1 N −1 m − 1, n γ N −1 r − 1 − 1 2 + 2 k+1 N −1 m + 1 i , where m = 1, 2, . . . , 3n γ · 2 −k−1 . Then P n ∃I ⊂ I r −1 ∪ I r ∪ I r+1 : |I| ≤ 2 k+1 N −1 , N I ≥ 2 o ≤ 3n γ ·2 −k−1 X m=1 P N J m ≥ 2 Using the level repulsion estimate given in Theorem 3.4 of [15] here the condition 2.5 is used and the fact that J m ⊂ I r −1 ∪ I r ∪ I r+1 ⊂ [−2 + κ, 2 − κ] since |r| ≤ r 1 , we have P N J m ≥ 2 ≤ CN|J m | 4 and thus A ≤ C n 3 γ N −1 X k= −∞ X |r|≤r 1 2 −2k 2 −k−1 2 k+2 4 ≤ C n 2 γ . and this completes the proof of 4.23. 541 For the proof of 4.24, we note that it is sufficient to bound the event when N |λ j − λ ℓ | ≥ 1 after using 4.23. Inserting the partition 4.25, we get 1 N E 1 Ω ∗ X j ℓ 1N |λ ℓ − λ j | ≥ 1 N λ ℓ − λ j = 1 N X |r|,|s|≤r E 1 Ω X j ℓ 1 λ j ∈ I r , λ ℓ ∈ I s 1N |λ ℓ − λ j | ≥ 1 N λ ℓ − λ j ≤ C N X |r|,|s|≤r E 1 Ω N I r N I s n γ [|s − r| − 1] + + 1 ≤ C n 2 γ N X |r|,|s|≤r 1 n γ [|s − r| − 1] + + 1 ≤ C n γ log N . Recalling the choice of n completes the proof of Lemma 4.4. ƒ 5 Global entropy

5.1 Evolution of the entropy

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52