Bound on the entropy

assuming that the boundary term Z ∂ Ξ ∂ i h ∂ 2 i j h e −H = 0 5.9 in the integration by parts vanishes. To see 5.9, consider a segment λ i = λ i+1 of the boundary ∂ Ξ. From the explicit representation 5.11, 5.12 in the next section, we will see that f t ≥ 0 is a meromorphic function in each variable in the domain Ξ for any t 0. It can be represented as by λ i+1 − λ i β F λ with some β ∈ Z, where F is analytic and 0 F ∞ near λ i = λ i+1 . Since f t ≥ 0, we obtain that the exponent β is non-negative and even. Therefore f 1 2 t behaves as |λ i+1 − λ i | β2 with a non-negative integer exponent β2 near λ i = λ i+1 . It then follows that ∂ i p f ∂ 2 i j p f e −H vanishes at the boundary due to the factor λ i+1 − λ i 2 in e −H , i.e. the integral 5.9 indeed vanishes.

5.2 Bound on the entropy

Lemma 5.1. Let s = N −1 . For any α 1 4 we have S µ f s := S f s µ|µ ≤ C N 1+ α 5.10 with C depending on α. Proof. In the proof we consider the probability density uλ and the equilibrium measure µ extended to R N see 3.12, i.e. the eigenvalues are not ordered. Clearly S f s µ|µ = S f s e µ|e µ and we estimate the relative entropy of the extended measures. Given the density f λ e µdλ of the eigenvalues of the Wigner matrix as an initial distribution, the eigenvalue density f s λ for the matrix evolved under the Dyson’s Brownian motion is given by f s λ euλ = Z R N g s λ, ν f ν euνdν 5.11 with a kernel g s λ, ν = N N 2 2π N 2 c N N −12 1 − c 2 N 2 ∆ N λ ∆ N ν det ‚ exp – −Ncλ j − ν k 2 21 − c 2 ™Œ j,k , 5.12 where c = cs = e −s2 for brevity. The derivation of 5.12 follows very similarly to Johansson’s presentation of the Harish-ChandraItzykson-Zuber formula see Proposition 1.1 of [21] with the difference that in our case the matrix elements move by the Ornstein-Uhlenbeck process 3.1 in- stead of the Brownian motion. In particular, formula 5.12 implies that f s is an analytic function for any s 0 since f s λ = h s λ ∆ N λ Z R N det ‚ exp – −Ncλ j − ν k 2 21 − c 2 ™Œ j,k f ν euν ∆ N ν dν with an explicit analytic function h s λ. Since the determinant is analytic in λ, we see that f s λ is meromorphic in each variables and the only possible poles of f s λ come from the factors λ i −λ j −1 544 in ∆ N λ near the coalescence points. But f s λ is a non-negative function, so it cannot have a singularity of order −1, thus these singular factors cancel out from a factor λ i − λ j from the integral. Alternatively, using the Laplace expansion the determinant, one can explicitly see that each 2 by 2 subdeterminant from the i-th and j-th columns carry a factor ±λ i − λ j . Then, by Jensen inequality from 5.11 and from the fact that f ν euν is a probability density, we have S e µ f s = Z R N f s log f s d e µ ≤ ZZ R N ×R N log g s λ, ν euλ g s λ, ν f ν euνdλ dν. Expanding this last expression we find, after an exact cancellation of the term N 2 log2π, S e µ f s ≤ ZZ R N ×R N N 2 log N − N N − 1 2 log c − N 2 log1 − c 2 + log ∆ N λ − log ∆ N ν + log det ‚ exp – −Ncλ j − ν k 2 21 − c 2 ™Œ j,k − N 2 2 log N + N 2 N X i=1 λ 2 i − 2 log ∆ N λ + N X j=1 log j    g s λ, ν f ν euνdλdν. Since s = N −1 , we have log c = −12N and log1 − c 2 = − log N + ON −1 . Hence S e µ f s ≤ ZZ R N ×R N C N log N + log ∆ N λ − log ∆ N ν + log det ‚ exp – −Ncλ j − ν k 2 21 − c 2 ™Œ j,k − N 2 2 log N + N 2 N X i=1 λ 2 i − 2 log ∆ N λ + N X i=1 log j g s λ, ν f ν euνdλdν. 5.13 For the determinant term, we use that each entry is at most one, thus log det ‚ exp – −Ncλ j − ν k 2 21 − c 2 ™Œ j,k ≤ log N. The last term in 5.13 can be estimated using Stirling’s formula and Riemann integration N X j=1 log j ≤ N X j=1 ‚ log j e j + C log2π j Œ ≤ Z N +1 1 dx x log x − N X j=1 j + C N log N ≤ N 2 log N 2 − 3 4 N 2 + C N log N 5.14 thus the 1 2 N 2 log N terms cancel. For the N 2 terms we need the following approximation 545 Lemma 5.2. With respect to any Wigner ensemble whose single-site distribution satisfies 2.4–2.6 and for any α 14 we have E h N 2 N X i=1 λ 2 i − 2 log ∆ N λ i = 3 4 N 2 + ON 1+ α , 5.15 where the constant in the error term depends on α and on the constants in 2.4–2.6. Note that 2.6, 2.5 hold for both the initial Wigner ensemble with density f and for the evolved one with density f t . These conditions ensure that Theorem 3.5 of [15] is applicable. Proof of Lemma 5.2. The quadratic term can be computed explicitly using 3.4: N 2 E N X i=1 λ 2 i = N 2 E Tr H 2 = 1 2 N 2 = N 2 2 Z x 2 ̺ sc x dx, 5.16 The second determinant term will be approximated in the following lemma whose proof is post- poned to Appendix D. Lemma 5.3. With respect to any Wigner ensemble whose single-site distribution satisfies 2.4–2.6 and for any α 14 we have E log ∆ N λ = N 2 2 Z Z log |x − y| ̺ sc x̺ sc y dx d y + ON 1+ α . 5.17 Finally, explicit calculation then shows that 1 2 Z x 2 ̺ sc x dx − Z Z log |x − y| ̺ sc x̺ sc y dx d y = 3 4 , and this proves Lemma 5.2. ƒ Hence, continuing the estimate 5.13, we have the bound S e µ f s ≤ C N 1+ α + ZZ R N ×R N log ∆ N λ − log ∆ N ν g s λ, ν f ν euνdνdλ ≤ C N 1+ α + N 4 E N X j=1 [λ 2 j s − λ 2 j 0] = C N 1+ α , 5.18 where we used Lemma 5.2 both for the initial Wigner measure and for the evolved one and finally we used that the E Tr H 2 is preserved, see 3.4. This completes the proof of 5.10. ƒ 6 Local equilibrium

6.1 External and internal points

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52