7 Cutoff Estimates
In this section, we cutoff the interaction with the far away particles. We fix a good index L ∈ G and
a good external point configuration y
∈ Y
L
. Consider the measure µ
y
= e
−H
y
Z
y
with H
y
x = N
n
X
i=1
x
2 i
2 − 2N
−1
X
1 ≤i j≤n
log |x
j
− x
i
| − 2N
−1
X
k,i
log |x
i
− y
k
|
7.1 The measure
µ
y
is supported on the interval I
y
= y
−1
, y
1
. For any fixed
y, decompose
H
y
= H
1
+ H
2
, H
2
x =
n
X
i=1
V
2
x
i
, 7.2
where V
2
x = N
2 x
2
− 2 X
|k|≥n
B
log |x − y
k
| 7.3
and H
1
x = −2
X
1 ≤i j≤n
log |x
j
− x
i
| −
n
X
i=1
V
1
x
i
7.4 with
V
1
x = −2 X
|k|n
B
log |x − y
k
| where B is a large positive number with B
ǫ 12. We define the measure µ
1 y
dx :=
e
−H
1
x
d x
Z
1
. 7.5
Lemma 7.1. Let L ∈ G and y ∈ Y
L
. For B ≥ 20, we have
sup
x
∈I
n
y
d µ
1 y
d µ
y
x − 1
≤ Cn
−B9+2
7.6 This lemma will imply that one can cutoff all y
k
’s in the potential with |k| ≥ n
B
. Proof. Let
δV
2
:= max
x ∈I
y
V
2
− min
x ∈I
y
V
2
, then, by 6.15 and
y ∈ Y
L
, we have δV
2
≤ |I
y
|kV
′ 2
k
∞
≤ C nN
−1
kV
′ 2
k
∞
In Lemma 7.2 we will give an upper bound on kV
′ 2
k
∞
, and then we have, for B ≥ 20, that
δV
2
≤ C n
−B9+1
. 553
Since d
µ
1 y
d µ
y
x − 1 =
e
− P
n i=1
V
2
x
i
−min V
2
− 1 ≤ CnδV
2
≤ C n
−B9+2
, we obtain 7.6.
Lemma 7.2. For B ≥ 20 and for any L ∈ G
1
, y
∈ Y
L
we have sup
x ∈I
y
|V
′ 2
x| = sup
x ∈I
y
−2 X
|k|≥n
B
1 x
− y
k
+ N x ≤ C N n
γ12−B8
. 7.7
Proof. Recall that
y ∈ Y
L
⊂ Ω
1
implies that the density of the y’s is close the semicircle law in the sense of 6.9. Let
d := n
B
N ̺
sc
y
−1
. 7.8
Since y
∈ Ω
1
, we know that | y
−1
|, | y
1
| ≤ 2 − κ2 see 6.14, thus ̺
sc
y
−1
≥ c 0. Taking the imaginary part of 4.3 for
|z| ≤ 2 and renaming the variables, we have the identity x = 2
Z
R
̺
sc
y x
− y d y.
Furthermore, with ¯ y =
1 2
y
−1
+ y
1
we have Z
| y− ¯y|≤d
̺
sc
y x
− y d y
≤ Cd since ¯
y is away from the spectral edge thus ̺
sc
is continuously differentiable on the interval of integration [ ¯
y − d, ¯y + d]. Thus
N x − 2N Z
| y− ¯y|≥d
̺
sc
y x
− y d y
≤ CN d ≤ Cn
B
therefore to prove 7.7 it is sufficient to show that sup
x ∈I
y
1 N
X
|k|≥n
B
1 x
− y
k
− Z
| y− ¯y|≥d
̺
sc
y x
− y d y
≤ Cn
γ12−B8
7.9 We will consider only k
≥ n
B
and compare the sum with the integral on the regime y ≥ ¯y + d, the
sum for k ≤ −n
B
is similar. Define dyadic intervals
I
m
= [ ¯ y + 2
m
d, ¯ y + 2
m+1
d], m = 0, 1, 2, . . . , log N
Since y
∈ Y
L
⊂ Ω
1
, i.e. max | y
k
| ≤ K, there will be no y
k
above the last interval I
log N
. We subdivide each I
m
into n
B 2
equal disjoint subintervals of length 2
m
d n
−B2
I
m
=
n
B 2
[
ℓ=1
I
m, ℓ
, I
m, ℓ
= [ y
∗ m,
ℓ−1
, y
∗ m,
ℓ
] with
y
∗ m,
ℓ
:= y
1
+ 2
m
d1 + ℓn
−B2
. 554
For y
∈ Y
L
⊂ Ω
1
, the estimate 4.22 holds for y
1
and y
n
B
, i.e. N̺
sc
y
1
y
n
B
− y
1
− n
B
− 1 ≤ Cn
γ+3B4
≤ C n
4B 5
if B ≥ 20, which means that
| y
n
B
− y
1
+ d| ≤ C n
4B 5
N +
n
B
N 1
̺
sc
y
−1
− 1
̺
sc
y
1
≤ C n
4B 5
N +
C n
B+1
N
2
≤ C n
4B 5
N 7.10
using B ǫ 12, n
B
≤ N
1 2
, i.e. | y
n
B
− ¯y + d| ≤ C n
4B 5
N 7.11
by using the definition of d from 7.8, the fact that ̺
sc
y
±1
is separated away from zero and that |I
y
| ≤ C nN
−1
from 6.14. Therefore we can estimate
1 N
X
k ≥n
B
1 x
− y
k
− 1
N
log N
X
m=0 n
B 2
X
ℓ=1
X
j ∈J
L
1 y
j
∈ I
m, ℓ
x − y
j
≤ 1
N X
j ∈J
L
1 j n
B
, y
j
≥ ¯y + d |x − y
j
| +
1 N
X
j ∈J
L
1 j ≥ n
B
, y
j
¯y + d |x − y
j
| ≤ C n
1 −B5
. 7.12
To see the last estimate, we notice that in the first summand we have ¯ y + d
≤ y
j
≤ y
n
B
≤ ¯y + d + C n
4B 5
N
−1
by 7.11, i.e. all these y
j
’s lie in an interval of length C n
4B 5
N
−1
, so their number is bounded by C n
4B 5
by 6.10. Thus the first term in the right hand side of 7.12 is bounded by C n
4B 5
N
−1
d
−1
≤ C n
1 −B5
; the estimate of the second term is similar. Using that
max
y ∈I
m, ℓ
1 x
− y − min
y ∈I
m, ℓ
1 x
− y ≤ |I
m, ℓ
| max
x ∈I
y
max
y ∈I
m, ℓ
1 x − y
2
≤ C 2
m
d n
−B2
2
m
d
2
≤ C
2
m
d n
B 2
we have 1
N
log N
X
m=0 n
B 2
X
ℓ=1
X
j ∈J
L
1 y
j
∈ I
m, ℓ
x − y
j
− 1
N
log N
X
m=0 n
B 2
X
ℓ=1
N I
m, ℓ
x − y
∗ m,
ℓ
≤ C
N
log N
X
m=0 n
B 2
X
ℓ=1
N I
m, ℓ
2
m
d n
B 2
≤ C
log N
X
m=0 n
B 2
X
ℓ=1
1 n
B
≤ C n
−B2
log N ≤ C n
−B4
. 7.13
In the second line we used that N I
m, ℓ
≤ KN|I
m, ℓ
| by 6.10 since y ∈ Ω
1
and I
m, ℓ
∩ I
y
= ;.
555
We use that for y
∈ Ω
1
we can apply 6.9 for I = I
m, ℓ
and we get 1
N X
m ≥0
n
B 2
X
ℓ=1
N I
m, ℓ
x − y
∗ m,
ℓ
− 1
N
log N
X
m=0 n
B 2
X
ℓ=1
N |I
m, ℓ
|̺
sc
y
∗ m,
ℓ
x − y
∗ m,
ℓ
≤ C n
γ12
N
log N
X
m=0 n
B 2
X
ℓ=1
N |I
m, ℓ
|
3 4
|x − y
∗ m,
ℓ
| ≤
C n
γ12
N
log N
X
m=0 n
B 2
X
ℓ=1
2
m
n
B 2
3 4
2
m
n
B
N
−1
≤ C n
γ12−B8
, 7.14
where we used that |I
m, ℓ
| = 2
m
d n
−B2
≤ C · 2
m
n
B 2
N
−1
see 7.8 and that |x − y
∗ m,
ℓ
| ≥ 2
m −1
d ≥
c · 2
m
n
B
N
−1
. Finally, the second term on the left hand side of 7.14 is a Riemann sum of the integral in 7.9
with an error
log N
X
m=0 n
B 2
X
ℓ=1
|I
m, ℓ
|̺
sc
y
∗ m,
ℓ
x − y
∗ m,
ℓ
− Z
| y− ¯y|≥d
̺
sc
y x
− y d y
≤
log N
X
m=0 n
B 2
X
ℓ=1
C N
2
m
n
B 2
|I
m, ℓ
|
2
≤ C n
−B2
log N , 7.15 since on each interval I
m, ℓ
we could estimate the derivative of the integrand as sup
y ∈I
m, ℓ
d d y
̺
sc
y x
− y ≤ C
N 2
m
n
B 2
. Combining 7.12, 7.13, 7.14 and 7.15, we have proved 7.9 which completes the proof of
Lemma 7.2.
8 Derivative Estimate of Orthogonal Polynomials
In the next few sections, we will prove the boundedness and small distance regularity of the density. Our proof follows the approach of [26] cf: Lemma 3.3 and 3.4 in [26], but the estimates are done
in a different way due to the singularity of the potential. For the rest of this paper, it is convenient to rescale the local equilibrium measure to the interval [
−1, 1] as we now explain. Suppose L
∈ G and y ∈ Y
L
. We change variables by introducing the transformation T : I
y
→ [−1, 1], e
w = T w := 2w
− ¯y |I
y
| ,
with ¯
y := y
−1
+ y
1
2 and its inverse
w = T
−1
e w = ¯
y + e
w |I
y
| 2
, then T I
y
= [−1, 1]. Let e µ
ey
be the measure µ
1 y
see 7.5 rescaled to the interval [ −1, 1], i.e.,
e µ
ey
d
ex :=
1 e
Z
n,
ey
exp h
− n
n
X
i=1
U
ey
ex
i
+ 2 X
1 ≤i j≤n
log |ex
i
− ex
j
| i
d
ex
8.1
556
on [ −1, 1]
n
with U
ey
ex := − 2
n X
|k|n
B
log |ex − ey
k
|. 8.2
The ℓ-point correlation functions of µ
y
and e
µ
ey
are related by p
ℓ n
x
1
, x
2
, . . . x
n
= p
ℓ n
¯ y +
ex
1
|I
y
| 2
, . . . ¯ y +
ex
n
|I
y
| 2
= 2
|I
y
|
ℓ
ep
ℓ n
ex
1
, ex
2
, . . . ex
n
. 8.3
Let p
j
λ, j = 0, 1, . . . denote the real orthonormal polynomials on [−1, 1] corresponding to the weight function e
−nU
ey
λ
, i.e. deg p
j
= j and Z
1 −1
p
j
λp
k
λe
−nU
ey
λ
d λ = δ
jk
and define ψ
j
λ := p
j
λe
−nU
ey
λ2
8.4 to be orthonormal functions with respect to the Lebesgue measure on [
−1, 1]. Everything depends on
y, but y is fixed in this section and we will omit this dependence from the notation.