decompose getdoc0885. 605KB Jun 04 2011 12:04:03 AM

7 Cutoff Estimates In this section, we cutoff the interaction with the far away particles. We fix a good index L ∈ G and a good external point configuration y ∈ Y L . Consider the measure µ y = e −H y Z y with H y x = N    n X i=1 x 2 i 2 − 2N −1 X 1 ≤i j≤n log |x j − x i | − 2N −1 X k,i log |x i − y k |    7.1 The measure µ y is supported on the interval I y = y −1 , y 1 . For any fixed

y, decompose

H y = H 1 + H 2 , H 2 x = n X i=1 V 2 x i , 7.2 where V 2 x = N 2 x 2 − 2 X |k|≥n B log |x − y k | 7.3 and H 1 x = −2 X 1 ≤i j≤n log |x j − x i | − n X i=1 V 1 x i 7.4 with V 1 x = −2 X |k|n B log |x − y k | where B is a large positive number with B ǫ 12. We define the measure µ 1 y dx := e −H 1 x d x Z 1 . 7.5 Lemma 7.1. Let L ∈ G and y ∈ Y L . For B ≥ 20, we have sup x ∈I n y d µ 1 y d µ y x − 1 ≤ Cn −B9+2 7.6 This lemma will imply that one can cutoff all y k ’s in the potential with |k| ≥ n B . Proof. Let δV 2 := max x ∈I y V 2 − min x ∈I y V 2 , then, by 6.15 and y ∈ Y L , we have δV 2 ≤ |I y |kV ′ 2 k ∞ ≤ C nN −1 kV ′ 2 k ∞ In Lemma 7.2 we will give an upper bound on kV ′ 2 k ∞ , and then we have, for B ≥ 20, that δV 2 ≤ C n −B9+1 . 553 Since d µ 1 y d µ y x − 1 = e − P n i=1 V 2 x i −min V 2 − 1 ≤ CnδV 2 ≤ C n −B9+2 , we obtain 7.6. ƒ Lemma 7.2. For B ≥ 20 and for any L ∈ G 1 , y ∈ Y L we have sup x ∈I y |V ′ 2 x| = sup x ∈I y −2 X |k|≥n B 1 x − y k + N x ≤ C N n γ12−B8 . 7.7 Proof. Recall that y ∈ Y L ⊂ Ω 1 implies that the density of the y’s is close the semicircle law in the sense of 6.9. Let d := n B N ̺ sc y −1 . 7.8 Since y ∈ Ω 1 , we know that | y −1 |, | y 1 | ≤ 2 − κ2 see 6.14, thus ̺ sc y −1 ≥ c 0. Taking the imaginary part of 4.3 for |z| ≤ 2 and renaming the variables, we have the identity x = 2 Z R ̺ sc y x − y d y. Furthermore, with ¯ y = 1 2 y −1 + y 1 we have Z | y− ¯y|≤d ̺ sc y x − y d y ≤ Cd since ¯ y is away from the spectral edge thus ̺ sc is continuously differentiable on the interval of integration [ ¯ y − d, ¯y + d]. Thus N x − 2N Z | y− ¯y|≥d ̺ sc y x − y d y ≤ CN d ≤ Cn B therefore to prove 7.7 it is sufficient to show that sup x ∈I y 1 N X |k|≥n B 1 x − y k − Z | y− ¯y|≥d ̺ sc y x − y d y ≤ Cn γ12−B8 7.9 We will consider only k ≥ n B and compare the sum with the integral on the regime y ≥ ¯y + d, the sum for k ≤ −n B is similar. Define dyadic intervals I m = [ ¯ y + 2 m d, ¯ y + 2 m+1 d], m = 0, 1, 2, . . . , log N Since y ∈ Y L ⊂ Ω 1 , i.e. max | y k | ≤ K, there will be no y k above the last interval I log N . We subdivide each I m into n B 2 equal disjoint subintervals of length 2 m d n −B2 I m = n B 2 [ ℓ=1 I m, ℓ , I m, ℓ = [ y ∗ m, ℓ−1 , y ∗ m, ℓ ] with y ∗ m, ℓ := y 1 + 2 m d1 + ℓn −B2 . 554 For y ∈ Y L ⊂ Ω 1 , the estimate 4.22 holds for y 1 and y n B , i.e. N̺ sc y 1 y n B − y 1 − n B − 1 ≤ Cn γ+3B4 ≤ C n 4B 5 if B ≥ 20, which means that | y n B − y 1 + d| ≤ C n 4B 5 N + n B N 1 ̺ sc y −1 − 1 ̺ sc y 1 ≤ C n 4B 5 N + C n B+1 N 2 ≤ C n 4B 5 N 7.10 using B ǫ 12, n B ≤ N 1 2 , i.e. | y n B − ¯y + d| ≤ C n 4B 5 N 7.11 by using the definition of d from 7.8, the fact that ̺ sc y ±1 is separated away from zero and that |I y | ≤ C nN −1 from 6.14. Therefore we can estimate 1 N X k ≥n B 1 x − y k − 1 N log N X m=0 n B 2 X ℓ=1 X j ∈J L 1 y j ∈ I m, ℓ x − y j ≤ 1 N X j ∈J L 1 j n B , y j ≥ ¯y + d |x − y j | + 1 N X j ∈J L 1 j ≥ n B , y j ¯y + d |x − y j | ≤ C n 1 −B5 . 7.12 To see the last estimate, we notice that in the first summand we have ¯ y + d ≤ y j ≤ y n B ≤ ¯y + d + C n 4B 5 N −1 by 7.11, i.e. all these y j ’s lie in an interval of length C n 4B 5 N −1 , so their number is bounded by C n 4B 5 by 6.10. Thus the first term in the right hand side of 7.12 is bounded by C n 4B 5 N −1 d −1 ≤ C n 1 −B5 ; the estimate of the second term is similar. Using that max y ∈I m, ℓ 1 x − y − min y ∈I m, ℓ 1 x − y ≤ |I m, ℓ | max x ∈I y max y ∈I m, ℓ 1 x − y 2 ≤ C 2 m d n −B2 2 m d 2 ≤ C 2 m d n B 2 we have 1 N log N X m=0 n B 2 X ℓ=1 X j ∈J L 1 y j ∈ I m, ℓ x − y j − 1 N log N X m=0 n B 2 X ℓ=1 N I m, ℓ x − y ∗ m, ℓ ≤ C N log N X m=0 n B 2 X ℓ=1 N I m, ℓ 2 m d n B 2 ≤ C log N X m=0 n B 2 X ℓ=1 1 n B ≤ C n −B2 log N ≤ C n −B4 . 7.13 In the second line we used that N I m, ℓ ≤ KN|I m, ℓ | by 6.10 since y ∈ Ω 1 and I m, ℓ ∩ I y = ;. 555 We use that for y ∈ Ω 1 we can apply 6.9 for I = I m, ℓ and we get 1 N X m ≥0 n B 2 X ℓ=1 N I m, ℓ x − y ∗ m, ℓ − 1 N log N X m=0 n B 2 X ℓ=1 N |I m, ℓ |̺ sc y ∗ m, ℓ x − y ∗ m, ℓ ≤ C n γ12 N log N X m=0 n B 2 X ℓ=1 N |I m, ℓ | 3 4 |x − y ∗ m, ℓ | ≤ C n γ12 N log N X m=0 n B 2 X ℓ=1 2 m n B 2 3 4 2 m n B N −1 ≤ C n γ12−B8 , 7.14 where we used that |I m, ℓ | = 2 m d n −B2 ≤ C · 2 m n B 2 N −1 see 7.8 and that |x − y ∗ m, ℓ | ≥ 2 m −1 d ≥ c · 2 m n B N −1 . Finally, the second term on the left hand side of 7.14 is a Riemann sum of the integral in 7.9 with an error log N X m=0 n B 2 X ℓ=1 |I m, ℓ |̺ sc y ∗ m, ℓ x − y ∗ m, ℓ − Z | y− ¯y|≥d ̺ sc y x − y d y ≤ log N X m=0 n B 2 X ℓ=1 C N 2 m n B 2 |I m, ℓ | 2 ≤ C n −B2 log N , 7.15 since on each interval I m, ℓ we could estimate the derivative of the integrand as sup y ∈I m, ℓ d d y ̺ sc y x − y ≤ C N 2 m n B 2 . Combining 7.12, 7.13, 7.14 and 7.15, we have proved 7.9 which completes the proof of Lemma 7.2. ƒ 8 Derivative Estimate of Orthogonal Polynomials In the next few sections, we will prove the boundedness and small distance regularity of the density. Our proof follows the approach of [26] cf: Lemma 3.3 and 3.4 in [26], but the estimates are done in a different way due to the singularity of the potential. For the rest of this paper, it is convenient to rescale the local equilibrium measure to the interval [ −1, 1] as we now explain. Suppose L ∈ G and y ∈ Y L . We change variables by introducing the transformation T : I y → [−1, 1], e w = T w := 2w − ¯y |I y | , with ¯ y := y −1 + y 1 2 and its inverse w = T −1 e w = ¯ y + e w |I y | 2 , then T I y = [−1, 1]. Let e µ ey be the measure µ 1 y see 7.5 rescaled to the interval [ −1, 1], i.e., e µ ey d ex := 1 e Z n, ey exp h − n n X i=1 U ey ex i + 2 X 1 ≤i j≤n log |ex i − ex j | i d ex 8.1 556 on [ −1, 1] n with U ey ex := − 2 n X |k|n B log |ex − ey k |. 8.2 The ℓ-point correlation functions of µ y and e µ ey are related by p ℓ n x 1 , x 2 , . . . x n = p ℓ n ¯ y + ex 1 |I y | 2 , . . . ¯ y + ex n |I y | 2 = 2 |I y | ℓ ep ℓ n ex 1 , ex 2 , . . . ex n . 8.3 Let p j λ, j = 0, 1, . . . denote the real orthonormal polynomials on [−1, 1] corresponding to the weight function e −nU ey λ , i.e. deg p j = j and Z 1 −1 p j λp k λe −nU ey λ d λ = δ jk and define ψ j λ := p j λe −nU ey λ2 8.4 to be orthonormal functions with respect to the Lebesgue measure on [ −1, 1]. Everything depends on

y, but y is fixed in this section and we will omit this dependence from the notation.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52