Evolution of the entropy

For the proof of 4.24, we note that it is sufficient to bound the event when N |λ j − λ ℓ | ≥ 1 after using 4.23. Inserting the partition 4.25, we get 1 N E 1 Ω ∗ X j ℓ 1N |λ ℓ − λ j | ≥ 1 N λ ℓ − λ j = 1 N X |r|,|s|≤r E 1 Ω X j ℓ 1 λ j ∈ I r , λ ℓ ∈ I s 1N |λ ℓ − λ j | ≥ 1 N λ ℓ − λ j ≤ C N X |r|,|s|≤r E 1 Ω N I r N I s n γ [|s − r| − 1] + + 1 ≤ C n 2 γ N X |r|,|s|≤r 1 n γ [|s − r| − 1] + + 1 ≤ C n γ log N . Recalling the choice of n completes the proof of Lemma 4.4. ƒ 5 Global entropy

5.1 Evolution of the entropy

Recall the definition of the entropy of f µ with respect to µ S µ f := S f µ|µ = Z f log f d µ and let f t solve 3.9. Then the evolution of the entropy is given by the equation ∂ t S f t = −D p f t and thus using that S f t 0 we have Z t s D p f u du ≤ S f s . 5.1 For dynamics with energy H and the convexity condition Hess H = ∇ 2 H ≥ Λ 5.2 for some constant Λ, the following Bakry-Emery inequality [2] holds: ∂ t D p f t ≤ − Λ N D p f t notice the additional N factor due to the N −1 in front of the second order term in the generator L, see 3.7. This implies the logarithmic Sobolev inequality that for any probability density g, with respect to µ, D p g = − Z p g L p gd µ ≥ Λ N Sg 5.3 542 In this case, the Dirichlet form is a decreasing function in time and we thus have for any t s that D p f t ≤ S f s t − s 5.4 In our setting, we have Hess H = ∂ 2 H ∂ λ i ∂ λ j = δ i j   N + X k 6= j 2 λ j − λ k 2    − δ i 6= j 2 λ i − λ j 2 ≥ N · Id 5.5 as a matrix inequality away from the singularities see remark below how to treat the singular set. Thus we have ∂ t D p f t ≤ −D p f t 5.6 and by 5.3 ∂ t S f t ≤ −S f t 5.7 This tells us that S f t in 3.9 is exponential decaying as long as t ≫ 1. But for any time t ∼ 1 fixed, the entropy is still the same order as the initial one. Note that t ∼ 1 is the case considered in Johasson’s work [21]. Remark 5.1. The proof of 5.5 and the application of the Bakry-Emery condition in 5.6 requires further justification. Typically, Bakry-Emery condition is applied for Hamiltonians H defined on spaces without boundary. Although the Hamiltonian H 3.5 is defined on R N , it is however convex only away from any coalescence points λ i = λ j for some i 6= j; the Hessian of the logarithmic terms has a Dirac delta singularity with the wrong negative sign whenever two particles overlap. In accordance with the convention that we work on the space Ξ N throughout the paper, we have to consider H restricted to Ξ N , where it is convex, i.e. 5.5 holds, but we have to verify that the Bakry-Emery result still applies. We review the proof of Bakry and Emery and prove that the contribution of the boundary term is zero. Recall that the invariant measure exp −H dλ and the dynamics L = 1 2N [∆−∇H ∇] are restricted to Ξ = Ξ N . With h = p f we have ∂ t h 2 = Lh 2 = 2hLh + 1 N ∇h 2 , i.e. ∂ t h = Lh + 1 2N h −1 ∇h 2 . Computing ∂ t D p f t , we have ∂ t 1 2N Z Ξ ∇h 2 e −H dλ = 1 N Z Ξ ∇h∇ Lh + 1 2N h −1 ∇h 2 e −H dλ = 1 N Z Ξ h ∇hL∇h − 1 2N ∇h∇ 2 H ∇h + 1 2N ∇h∇[h −1 ∇h 2 ] i e −H dλ = 1 2N 2 Z Ξ h − ∇h∇ 2 H ∇h − X i, j ∂ 2 i j h − ∂ i h ∂ j h h 2 i e −H dλ ≤ −D p f t 5.8 543 assuming that the boundary term Z ∂ Ξ ∂ i h ∂ 2 i j h e −H = 0 5.9 in the integration by parts vanishes. To see 5.9, consider a segment λ i = λ i+1 of the boundary ∂ Ξ. From the explicit representation 5.11, 5.12 in the next section, we will see that f t ≥ 0 is a meromorphic function in each variable in the domain Ξ for any t 0. It can be represented as by λ i+1 − λ i β F λ with some β ∈ Z, where F is analytic and 0 F ∞ near λ i = λ i+1 . Since f t ≥ 0, we obtain that the exponent β is non-negative and even. Therefore f 1 2 t behaves as |λ i+1 − λ i | β2 with a non-negative integer exponent β2 near λ i = λ i+1 . It then follows that ∂ i p f ∂ 2 i j p f e −H vanishes at the boundary due to the factor λ i+1 − λ i 2 in e −H , i.e. the integral 5.9 indeed vanishes.

5.2 Bound on the entropy

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52