Good external configurations Bounds in equilibrium

6.3 Local entropy bound

Suppose that L ∈ G 1 and fix it. For any y ∈ Ξ N −n L denote by H y x = N    n X i=1 1 2 x 2 i − 2 N X 1 ≤i j≤n log |x j − x i | − 2 N X k ∈J L n X i=1 log |x i − y k |    6.22 Note that Hess H y x ≥ inf x ∈I y X k ∈J L |x − y k | −2 6.23 for any x ∈ I n y as a matrix inequality. On the set y ∈ Ω 2 L we have inf x ∈I y X k ∈J L |x − y k | −2 ≥ 1 | y 1 − y −1 | 2 ≥ cN 2 n 2 , y ∈ Ω 2 L. We can apply the logarithmic Sobolev inequality 5.3 to the local measure µ y , taking into account Remark 5.1. Thus we have S µ L y f y ≤ c −1 n 2 N −1 D L, y p f y x ≤ C n 6 N α τ −1 for any y ∈ Ω 2 L ∩ Ω 3 L, L ∈ G 1 . 6.24 Using the inequality p S f ≥ C Z | f − 1|dµ 6.25 for µ = µ y and f = f y , we have also have –Z | f y − 1|dµ y ™ 2 ≤ C n 6 N α τ −1 for any y ∈ Ω 2 L ∩ Ω 3 L, L ∈ G 1 6.26 We will choose t = N −1 τ with τ = N β such that C n 6 N α τ −1 ≤ n −4 6.27 i.e. β ≥ 10ǫ + α.

6.4 Good external configurations

Definition 6.1. The set of good L-indices is defined by G := n L ∈ G 1 : E f X j 6=L 1 Ω [N λ j − λ L ] 2 ≤ C n 3 γ , E f X j 6=L+n+1 1 Ω [N λ j − λ L+n+1 ] 2 ≤ C n 3 γ o ∩ n L ∈ G 1 : E f X j 6=L 1 Ω N |λ j − λ L | ≤ C n 3 γ , E f X j 6=L+n+1 1 Ω N |λ L+n+1 − λ j | ≤ C n 3 γ o . 6.28 550 Lemma 4.4 together with 6.19 imply that |G | N 1 − 2κ 3 2 ≥ 1 − 1 n γ . 6.29 Notice that for any fixed L we can write E f L+n X j=L+1 1 Ω N λ j − λ L = E f E f y n X j=1 1 Ω y N x j − y −1 E f L+n X j=L+1 1 Ω [N λ j − λ L ] 2 = E f E f y n X j=1 1 Ω y [N x j − y −1 ] 2 and we also have E f X j 6=L+1,...L+n 1 Ω N |λ j − λ L | = E f X j ∈J L , j 6=−1 1 N | y j − y −1 | P f y Ω y ≥ 1 2 E f X j ∈J L , j 6=−1 1y ∈ Ω 1 N | y j − y −1 | , and similar formulae hold when λ L is replaced with λ L+n+1 and y −1 with y 1 . We also want to ensure that the density on scale η := η ∗ = n γ N −1 is close to the semicircle law. Let O E x = 1|x − E| ≤ η2 be the characteristic function of the interval [E − η2, E + η2]. Consider Ω defined in 4.16, then Ω ⊂ Ω and 4.19 imply that E f 1 Ω sup |E|≤2−κ2 1 N η N X i=1 O E λ i − ̺ sc E ≤ Nη −14 n γ12 = n −γ6 Fix L ∈ G , consider y ∈ Ξ N −n L and define I ∗ y := [ y −1 + η2, y 1 − η2] so that if E ∈ I ∗ y then [E − η2, E + η2] ⊂ I y . Moreover, on the set Ω we know that I y ⊂ [−2 + κ2, 2 − κ2] see 6.14. Therefore E f E f y 1 Ω y sup E ∈I ∗ y n −γ n X i=1 O E x i − ̺ sc E ≤ E f 1 Ω sup |E|≤2−κ2 1 N η N X i=1 O E λ i − ̺ sc E ≤ n −γ6 . 6.30 This gives rise to the following definition: Definition 6.2. Let L ∈ G . The set of good external points is given by Y L :=Ω 1 ∩ Ω 2 ∩ Ω 3 ∩ ¨ y = y − , y + ∈ Ξ N −n L : X ± X k ∈JL k 6=±1 1 |N y ±1 − y k | ≤ C n 3 γ , E f y X ± n X j=1 1 Ω y N |x j − y ±1 | ≤ C n 4 γ , E f y X ± n X j=1 1 Ω y [N x j − y ±1 ] 2 ≤ C n 4 γ , E f y 1 Ω y sup E ∈I ∗ y n −γ n X i=1 1 N |x i − E| ≤ 1 2 n γ − ̺ sc E ≤ n −γ12 « 6.31 551 It follows from 6.8, 6.16, 6.21, 6.28 and 6.30 that P f Y L ≥ 1 − C n −γ12 . 6.32

6.5 Bounds in equilibrium

In this section we translate the bounds in the second and third lines of 6.31 into similar bounds with respect to equilibrium using that the control on the local Dirichlet form also controls the local entropy for the good indices: Lemma 6.1. Let A 0 be arbitrary and y ∈ Y L . If τ ≥ n 4A+8 N α , i.e. β ≥ 4A + 8ǫ + α, then for p = 1, 2 we have E µ y X ± n X j=1 1N |x j − y ±1 | ≥ n −A [N |x j − y ±1 |] p ≤ C n 4 γ 6.33 Moreover, we also have E µ y sup E ∈I ∗ y n −γ n X i=1 O E x i − ̺ sc E ≤ Cn −γ12 . 6.34 Proof. Let O : R n → R be any observable and Ω y be any event. Then for any fixed y ∈ Ξ N −n we have E f y 1 Ω y O − E µ y 1 Ω y O 2 = h Z 1 Ω y O f y − 1dµ y i 2 ≤ kOk 2 ∞ h Z | f y − 1|dµ y i 2 ≤ CkOk 2 ∞ S µ y f y by the entropy inequality 6.25. If L ∈ G and y ∈ Ω 2 L, then we have by 6.26 that E µ y 1 Ω y O ≤ E f y 1 Ω y O + CkO k ∞ n 6 N α τ −1 1 2 . 6.35 For a given y ∈ Y L , we set the observable O x = X ± n X j=1 1N x j − y ±1 ≥ n −A [N |x j − y ±1 |] p . with kO k ∞ ≤ C n Ap+1 ≤ cn 2A+1 . Then, for τ ≥ n 4A+8 N α we obtain from 6.31 and 6.35 that E µ y X ± n X j=1 1 Ω y 1N |x j − y ±1 | ≥ n −A [N |x j − y ±1 |] p ≤ C n 4 γ + C n 2A+4 N α2 τ −12 ≤ C n 4 γ . On the complement set Ω c y we just use the crude supremum bound together with the bound on P f y Ω c y in the definition of Ω 1 6.7: E µ y X ± n X j=1 1 Ω c y 1N |x j − y ±1 | ≥ n −A [N |x j − y ±1 |] p ≤ C n 4A+1 e −n γ12 ≤ C n 4 γ . Combining the last two estimates proves 6.33. The proof of 6.34 is analogous, here we use that the corresponding observable has an L ∞ bound n −γ n X i=1 O E x i − ̺ sc E ≤ n 1 −γ . This completes the proof of Lemma 6.1. ƒ 552 7 Cutoff Estimates In this section, we cutoff the interaction with the far away particles. We fix a good index L ∈ G and a good external point configuration y ∈ Y L . Consider the measure µ y = e −H y Z y with H y x = N    n X i=1 x 2 i 2 − 2N −1 X 1 ≤i j≤n log |x j − x i | − 2N −1 X k,i log |x i − y k |    7.1 The measure µ y is supported on the interval I y = y −1 , y 1 . For any fixed

y, decompose

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52