Preliminaries Stopping times Organization of the paper

Let ˜ F ∞ be the σ-field generated by ˜ S = ρ C t , m C t , t ≥ 0. Recall that P ∗ µ,Π dS denotes the law of the marked exploration process S started at µ, Π ∈ S and stopped when ρ reaches 0. For ℓ ∈ 0, +∞, we will write P ∗ ℓ for P ∗ ℓδ ,0 . If Q is a measure on S and ϕ is a non-negative measurable function defined on the measurable space R + × S × S, we denote by Q[ ϕu, ω, ·] = Z S ϕu, ω, S QdS . In other words, the integration concerns only the third component of the function ϕ. We can now state the Special Markov Property. Theorem 3.2 Special Markov property. Let ϕ be a non-negative measurable function defined on R + × M f R + × S. Then, we have P-a.s. E  exp − X i ∈I ϕA α i , ρ α i − , S i ˜ F ∞   = exp ‚ − Z ∞ du α 1 N ” 1 − e −ϕu,µ,· — |µ= ˜ ρ u Œ exp − Z ∞ du Z 0,∞ π 1 dℓ € 1 − E ∗ ℓ [e −ϕu,µ,· ] |µ= ˜ ρ u Š . 34 In other words, the law under P of the excursion process X i ∈I δ A αi , ρ αi − , S i du dµ dS , given ˜ F ∞ , is the law of a Poisson point measure with intensity 1 {u≥0} du δ ˜ ρ u dµ α 1 Nd S + Z 0,∞ π 1 dℓP ∗ ℓ dS . Informally speaking, this Theorem gives the distribution of the marked exploration process “above” the pruned CRT. The end of this section is now devoted to its proof. Let us first remark that, if lim λ→+∞ φ 1 λ +∞, we have α 1 = 0 and π 1 is a finite measure. Hence, there is no marks on the skeleton and the number of marks on the nodes is finite on every bounded interval of time. The proof of Theorem 3.2 in that case is easy and left to the reader. For the rest of this Section, we assume that lim λ→+∞ φ 1 λ = +∞.

3.1 Preliminaries

Fix t 0 and η 0. For S = S s = ρ s , m s , s ≥ 0, we set B = {σS = +∞} ∪ {T η S = +∞} ∪ {L η S = −∞} where σS = inf{s 0; ρ s = 0}, T η S = inf{s ≥ η; 〈ρ s , 1 〉 ≥ η} and L η S = sup{s ∈ [0, σS ]; 〈η s , 1 〉 ≥ η}, with the convention inf ; = +∞ and sup ; = −∞. We consider non-negative bounded functions ϕ satisfying the assumptions of Theorem 3.2 and these four conditions: h 1 ϕu, µ, S = 0 for any u ≥ t. 1446 h 2 u 7→ ϕu, µ, S is uniformly Lipschitz with a constant that does not depend on µ and S . h 3 ϕu, µ, S = 0 on B; and if S ∈ B c then ϕu, µ, S depends on S only through S u , u ∈ [T η , L η ]. h 4 The function µ 7→ ϕu, µ, S is continuous with respect to the distance Dµ, µ ′ + |〈µ, 1〉 − 〈µ ′ , 1 〉| on M f R + , where D is a distance on M f R + which defines the topology of weak convergence. Lemma 3.3. Let ϕ satisfies h 1 − h 3 and let w be defined on 0, ∞ × [0, ∞ × M f R + by w ℓ, u, µ = E ∗ ℓ [e −ϕu,µ,· ]. Then, for N − a.e. µ ∈ M f R + , the function ℓ, u 7→ wℓ, u, µ is uniformly continuous on 0, ∞ × [0, ∞. Proof. Let u 0 and ℓ ′ ℓ. If we set τ ℓ = inf{t ≥ 0, ρ t {0} = ℓ} we have, by the strong Markov property at time τ ℓ and assumption h 3 , that E ∗ ℓ ′ ” e −ϕu,µ,· — = E ∗ ℓ ′ h 1 {T η τ ℓ } E ∗ ℓ ” e −ϕu,µ,· —i + E ∗ ℓ ′ h e −ϕu,µ,· 1 {T η ≤τ ℓ } i . Therefore, wℓ ′ , u, µ − wℓ, u, µ| ≤ E ∗ ℓ ′ h 1 {T η ≤τ ℓ } E ∗ ℓ ” e −ϕu,µ,· —i + E ∗ ℓ ′ h e −ϕu,µ,· 1 {T η ≤τ ℓ } i ≤ 2P ∗ ℓ ′ T η ≤ τ ℓ = 2P ∗ ℓ ′ −ℓ T η +∞. Using Lemma 1.6, for ℓ ′ − ℓ η, we get |wℓ ′ , u, µ − wℓ, u, µ| ≤ 2 € 1 − e −ℓ ′ −ℓN[T η ∞] Š . Since N[T η ∞] ∞, we then deduce there exists a finite constant c η s.t. for all function ϕ satisfying h 3 , |wℓ ′ , u, µ − wℓ, u, µ| ≤ c η |ℓ ′ − ℓ|. 35 The absolute continuity with respect to u is a direct consequence of assumptions h 1 − h 2 .

3.2 Stopping times

Let Rd t, du be a Poisson point measure on R 2 + defined on S, F independent of F ∞ with inten- sity the Lebesgue measure. We denote by G t the σ-field generated by R· ∩ [0, t] × R + . For every ǫ 0, the process R ǫ t := R[0, t] × [0, 1ǫ] is a Poisson process with intensity 1ǫ. We denote by e ǫ k , k ≥ 1 the time intervals between the jumps of R ǫ t , t ≥ 0. The random variables e ǫ k , k ≥ 1 are i.i.d. exponential random variables with mean ǫ, and are independent of F ∞ . They define a mesh of R + which is finer and finer as ǫ decreases to 0. 1447 For ǫ 0, we consider T ǫ = 0, M ǫ = 0 and for k ≥ 0, M ǫ k+ 1 = inf{i M ǫ k ; m T ǫ k + P i j=M ǫ k +1 e ǫ j 6= 0}, S ǫ k+ 1 = T ǫ k + M ǫ k+ 1 X j=M ǫ k +1 e ǫ j , T ǫ k+ 1 = inf{s S ǫ k+ 1 ; m s = 0}, 36 with the convention inf ; = +∞. For every t ≥ 0, we set τ ǫ t = Z t ds 1 S k ≥1 [T ǫ k ,S ǫ k+ 1 s and F e t = σF t ∪ G τ ǫ t . 37 Notice that T ǫ k and S ǫ k are F e -stopping times. Now we introduce a notation for the process defined above the marks on the intervals ” S ǫ k , T ǫ k — . We set, for a ≥ 0, ¯ H a the level of the first mark, ρ − a the restriction of ρ a strictly below it and ρ + a the restriction of ρ a above it: ¯ H a = sup{t 0, m a [0, t] = 0}, ρ − a = ρ a · ∩ [0, ¯ H a 38 and ρ + a is defined by ρ a = [ρ − a , ρ + a ], that is for any f ∈ B + R + , 〈ρ + a , f 〉 = Z [ ¯ H a , ∞ f r − ¯ H a ρ a d r. 39 For k ≥ 1 and ǫ 0 fixed, we define S k , ǫ = € ρ k , ǫ , m k , ǫ Š in the following way: for s 0 and f ∈ B + R + ρ k , ǫ s = ρ + S ǫ k +s∧T ǫ k , 〈m a k , ǫ s , f 〉 = Z ¯ H Sǫ k ,+ ∞ f r − ¯ H S ǫ k m a S ǫ k +s∧T ǫ k d r, with a ∈ {nod, ske}, and m k , ǫ s = m nod k , ǫ s , m ske k , ǫ s . Notice that ρ k , ǫ s {0} = ρ S ǫ k { ¯ H S ǫ k }. For k ≥ 1, we consider the σ-field F ǫ,k generated by the family of processes S T ǫ ℓ +s∧S ǫ ℓ+1 − , s ℓ∈{0,...,k−1} . Notice that for k ∈ N ∗ F ǫ,k ⊂ F e S ǫ k . 40

3.3 Approximation of the functional

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52