The underlying Lévy process

1.1 The underlying Lévy process

We consider a R-valued Lévy process X = X t , t ≥ 0 starting from 0. We assume that X is the canonical process on the Skorohod space DR + , R of càd-làg real-valued paths, endowed with the canonical filtration. The law of the process X starting from 0 will be denoted by P and the corresponding expectation by E. Most of the following facts on Lévy processes can be found in [12]. In this paper, we assume that X • has no negative jumps, • has first moments, • is of infinite variation, • does not drift to +∞. The law of X is characterized by its Laplace transform: ∀λ ≥ 0, E ” e −λX t — = e t ψλ where, as X does not drift to + ∞, its Laplace exponent ψ can then be written as 1, where the Lévy measure π is a Radon measure on R + positive jumps that satisfies the integrability condition Z 0,+∞ ℓ ∧ ℓ 2 πdℓ +∞ X has first moments, the drift coefficient α is non negative X does not drift to +∞ and β ≥ 0. As we ask for X to be of infinite variation, we must additionally suppose that β 0 or R 0,1 ℓ πdℓ = +∞. As X is of infinite variation, we have, see Corollary VII.5 in [12], lim λ→∞ λ ψλ = 0. 9 Let I = I t , t ≥ 0 be the infimum process of X , I t = inf ≤s≤t X s , and let S = S t , t ≥ 0 be the supremum process, S t = sup ≤s≤t X s . We will also consider for every 0 ≤ s ≤ t the infimum of X over [s, t]: I s t = inf s ≤r≤t X r . We denote by J the set of jumping times of X : J = {t ≥ 0, X t X t − } 10 and for t ≥ 0 we set ∆ t := X t − X t − the height of the jump of X at time t. Of course, ∆ t 0 ⇐⇒ t ∈ J . The point 0 is regular for the Markov process X − I, and −I is the local time of X − I at 0 see [12], chap. VII. Let N be the associated excursion measure of the process X − I away from 0, and let 1436 σ = inf{t 0; X t − I t = 0} be the length of the excursion of X − I under N. We will assume that under N, X = I = 0. Since X is of infinite variation, 0 is also regular for the Markov process S − X . The local time L = L t , t ≥ 0 of S − X at 0 will be normalized so that E[e −λS L−1 t ] = e −tψλλ , where L −1 t = inf{s ≥ 0; L s ≥ t} see also [12] Theorem VII.4 ii.

1.2 The height process

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52