3.5 Computation of the limit
Recall notation of Section 3.2. Let A
ǫ s
be the Lebesgue measure of [0, s] T S
k ≥0
[T
ǫ k
, S
ǫ k+
1
]
. The process t
7→ sup{i ∈ N; P
i j=
1
e
ǫ j
≤ A
ǫ t
} is a Poisson process with intensity 1ǫ and the process s
7→ N
ǫ,t
, where N
ǫ,t
= sup{k ∈ N; A
ǫ S
ǫ k
≤ t} = sup{k ∈ N;
M
ǫ k
X
j= 1
e
ǫ j
≤ A
ǫ t
}, is a marked Poisson process with intensity Pm
τ
6= 0ǫ, where τ is an exponential random variable with mean
ǫ independent of S . We first study the process t
7→ N
ǫ,t
.
Lemma 3.7. The process t 7→ N
ǫ,t
is a Poisson process with intensity φ
1
γ ǫψ
γ , where
γ = ψ
−1
1ǫ. Proof.
We have, by the similar computations as in the proof of Lemma 3.5, Pm
τ
= 0 = 1
ǫ E
Z
∞
d t e
−tǫ
1
{m
t
=0}
= 1
ǫ Z
∞
ds e
−γs
N Z
σ
d t e
−tǫ
1
{m
t
=0}
= 1
ǫγ N
Z
σ
d t e
−tǫ
1
{m
t
=0}
.
By time reversibility and using optional projection and 15, we have N
Z
σ
d t e
−tǫ
1
{m
t
=0}
= N
Z
σ
d t e
−σ−tǫ
1
{m
t
=0}
= N Z
σ
d t e
−γ〈ρ
t
,1 〉
1
{m
t
=0}
.
The proof of Lemma 2.1, see 29 and 31, gives that Pm
τ
= 0 = 1
ǫψ γ
. Since ǫ
−1
= ψγ = ψ
γ − φ
1
γ, we get 1
ǫ Pm
τ
6= 0 = φ
1
γ ǫψ
γ .
We then get the following Corollary.
Corollary 3.8. There exists a sub-sequence ǫ
j
, j ∈ N decreasing to 0, s.t. P-a.s. for any t
≥ 0 and any continuous function h defined on R
+
× M
f
R
+
such that hu, µ = 0 for u ≥ t , we have, with
γ
j
= ψ
−1
1ǫ
j
, lim
j →∞
φ
1
γ
j −1
∞
X
k= 1
hA
S
ǫ j k
, ρ
− S
ǫ j k
= Z
∞
hu , ˜
ρ
u
du.
1456
Proof. Notice that as a direct consequence of 9 and 20, we get
lim
ǫ→0
ǫψ γ = 1.
Recall that A
ǫ S
ǫ k
, k ≥ 1 are the jumping time of the Poisson process t 7→ N
ǫ,t
with parameter φ
1
γǫψ γ. Standard results on Poisson process implies the vague convergence in distribution
see also Lemma XI.11.1 in [18] of φ
1
γ
−1
P
∞ k=
1
δ
A
ǫ Sǫ
k
d r towards the Lebesgue measure on R
+
as ǫ goes down to 0. Since the limit is deterministic, the convergence holds in probability and a.s.
along a decreasing sub-sequence ǫ
j
, j ∈ N. In particular, if g is a continuous function on R
+
with compact support hence bounded, we have that a.s.
lim
j →∞
φ
1
γ
j −1
∞
X
k= 1
gA
ǫ
j
S
ǫ j k
= Z
∞
gu du .
Notice that A
ǫ s
≥ A
s
and that a.s. A
ǫ s
→ A
s
as ǫ goes down to 0. This implies that a.s. A
ǫ s
, s ≥ 0
converges uniformly on compacts to A
s
, s ≥ 0. Therefore, if g is continuous with compact support,
we have a.s. lim
j →+∞
φ
1
γ
j −1
∞
X
k= 1
gA
ǫ
j
S
ǫ j k
− gA
S
ǫ j k
= 0. So we have that
lim
j →∞
φ
1
γ
j −1
∞
X
k= 1
gA
S
ǫ j k
= Z
∞
gu du 51
and this convergence also holds for a càd-làg function g with compact support as the Lebesgue measure does not charge the point of discontinuity of g.
Let h be a continuous function defined on R
+
× M
f
R
+
such that hu, µ = 0 for u ≥ t . First let
us remark that ρ
− S
ǫ k
= ρ
T
ǫ k
and that m
T
ǫ k
= 0. Using the strong Markov property at time T
ǫ k
and the second part of Corollary 2.2, we deduce that P-a.s. for all k
∈ N
∗
, C
A
T ǫ k
= T
ǫ k
. 52
Therefore, as A
S
ǫ k
= A
T
ǫ k
, we have P-a.s. ˜
ρ
A
Sǫ k
= ˜ ρ
A
T ǫ k
= ρ
T
ǫ k
= ρ
− S
ǫ k
. This gives
φ
1
γ
j −1
∞
X
k= 1
hA
S
ǫ j k
, ρ
− S
ǫ j k
= φ
1
γ
j −1
∞
X
k= 1
hA
S
ǫ j k
, ˜ ρ
A
S ǫ j
k
and applying the convergence 51 to the càd-làg function gu = hu
, ˜ ρ
u
gives the result of the lemma. We now study K
ǫ
given by 43. We keep the same notation as in Lemma 3.5. 1457
Lemma 3.9. There exists a deterministic function R s.t. lim
ǫ→0
Rǫ = 0 and for all ǫ 0 and µ ∈ M
f
R
+
, we have: sup
r ≥0
φ
1
γ logK
ǫ
r, µ − α
1
vr ,
µ − Z
0,∞
π
1
dℓ
1
1 − wℓ
1
, r, µ
≤ Rǫ. Proof.
We have K
ǫ
r, µ = ψγ
ψγ − ψvr, µ γ − vr, µ
γ 1
φ
1
γ α
1
γ + γ Z
1
du Z
0,∞
ℓ
1
π
1
dℓ
1
wuℓ
1
, r, µ e
−γ1−uℓ
1
= ψγ
ψγ − ψvr, µ γ − vr, µ
γ 1
φ
1
γ α
1
γ + Z
0,∞
π
1
dℓ
1
Z
γℓ
1
e
−s
ds w ℓ
1
− s
γ , r,
µ =
ψγ ψγ − ψvr, µ
γ − vr, µ γ
1 φ
1
γ φ
1
γ − Z
0,∞
π
1
dℓ
1
Z
γℓ
1
e
−s
ds 1
− wℓ
1
− s
γ , r,
µ .
In particular, we have φ
1
γ logK
ǫ
r, µ = −A
1
+ A
2
+ A
3
, where A
1
r = φ
1
γ log 1
− ψvr, µψγ ,
A
2
r = φ
1
γ log1 − vr, µγ, A
3
r = φ
1
γ log 1
− Z
0,∞
π
1
dℓ
1
Z
γℓ
1
e
−s
ds 1
− wℓ
1
− s
γ , r,
µ φ
1
γ .
Thanks to h
3
, there exists a finite constant a 0 s.t. P-a.s. vr, µ a for all r ≥ 0. We deduce there exists
ǫ 0 and a finite constant c 0 s.t. P-a.s for all ǫ ∈ 0, ǫ
], sup
r ≥0
|A
1
r| ≤ c φ
1
γ ψγ
and sup
r ≥0
|A
2
r − α
1
vr ,
µ| ≤ c
γ + c|
φ
1
γ γ
− α
1
|. 53
We have Z
0,∞
π
1
dℓ
1
Z
γℓ
1
e
−s
ds 1
− wℓ
1
− s
γ , r,
µ −
Z
0,∞
π
1
dℓ
1
1 − wℓ
1
, r, µ
= Z
0,∞
π
1
dℓ
1
e
−γℓ
1
wℓ
1
, r, µ − 1
+ Z
0,∞
π
1
dℓ
1
Z
∞
e
−s
ds w
ℓ
1
, r, µ − wℓ
1
− s
γ , r,
µ
1
{s≤γℓ
1
}
.
1458
It is then easy to get, using h
3
and 35, that P-a.s φ
2
γ = sup
r ≥0
Z
0,∞
π
1
dℓ
1
Z
γℓ
1
e
−s
ds 1
− wℓ
1
− s
γ , r,
µ −
Z
0,∞
π
1
dℓ
1
1 − wℓ
1
, r, µ
converges to 0 as γ goes to infinity.
Recall that we assumed that lim
γ→∞
φ
1
γ = +∞. Thus, there exist ǫ 0 and a finite constant c 0
s.t. P-a.s for all ǫ ∈ 0, ǫ
], sup
r ≥0
A
3
r − Z
0,∞
π
1
dℓ
1
1 − wℓ
1
, r, µ
≤ c
φ
1
γ + φ
2
γ. 54
Using 53 and 54, we get that there exists a deterministic function R s.t. P-a.s
sup
r ≥0
φ
1
γ logK
ǫ
r, µ − α
1
vr ,
µ − Z
0,∞
π
1
dℓ
1
1 − wℓ
1
, r, µ
≤ Rǫ, where lim
ǫ→0
Rǫ = 0, thanks to 9 and 20.
The previous results allow us to compute the following limit. We keep the same notation as in Lemma 3.5.
Lemma 3.10. Let ϕ satisfying condition h
1
–h
3
. There exists a sub-sequence ǫ
j
, j ∈ N decreasing
to 0, s.t. P-a.s.
lim
j →∞
∞
Y
k= 1
K
ǫ
j
A
S
ǫ j k
, ρ
− S
ǫ k
= exp − Z
∞
du α
1
vu + Z
0,∞
π
1
dℓ 1 − wℓ, u, µ .
Proof. Notice that thanks to h
1
, the functions v and u, µ 7→ wℓ, u, µ are continuous and that
for r ≥ t, vr, µ = 0 and wℓ, r, µ = 1. The result is then a direct consequence of Corollary 3.8 and
Lemma 3.9.
3.6 Proof of Theorem 3.2