Computation of the limit

3.5 Computation of the limit

Recall notation of Section 3.2. Let A ǫ s be the Lebesgue measure of [0, s] T €S k ≥0 [T ǫ k , S ǫ k+ 1 ] Š . The process t 7→ sup{i ∈ N; P i j= 1 e ǫ j ≤ A ǫ t } is a Poisson process with intensity 1ǫ and the process s 7→ N ǫ,t , where N ǫ,t = sup{k ∈ N; A ǫ S ǫ k ≤ t} = sup{k ∈ N; M ǫ k X j= 1 e ǫ j ≤ A ǫ t }, is a marked Poisson process with intensity Pm τ 6= 0ǫ, where τ is an exponential random variable with mean ǫ independent of S . We first study the process t 7→ N ǫ,t . Lemma 3.7. The process t 7→ N ǫ,t is a Poisson process with intensity φ 1 γ ǫψ γ , where γ = ψ −1 1ǫ. Proof. We have, by the similar computations as in the proof of Lemma 3.5, Pm τ = 0 = 1 ǫ E –Z ∞ d t e −tǫ 1 {m t =0} ™ = 1 ǫ Z ∞ ds e −γs N –Z σ d t e −tǫ 1 {m t =0} ™ = 1 ǫγ N –Z σ d t e −tǫ 1 {m t =0} ™ . By time reversibility and using optional projection and 15, we have N –Z σ d t e −tǫ 1 {m t =0} ™ = N –Z σ d t e −σ−tǫ 1 {m t =0} ™ = N –Z σ d t e −γ〈ρ t ,1 〉 1 {m t =0} ™ . The proof of Lemma 2.1, see 29 and 31, gives that Pm τ = 0 = 1 ǫψ γ . Since ǫ −1 = ψγ = ψ γ − φ 1 γ, we get 1 ǫ Pm τ 6= 0 = φ 1 γ ǫψ γ . We then get the following Corollary. Corollary 3.8. There exists a sub-sequence ǫ j , j ∈ N decreasing to 0, s.t. P-a.s. for any t ≥ 0 and any continuous function h defined on R + × M f R + such that hu, µ = 0 for u ≥ t , we have, with γ j = ψ −1 1ǫ j , lim j →∞ φ 1 γ j −1 ∞ X k= 1 hA S ǫ j k , ρ − S ǫ j k = Z ∞ hu , ˜ ρ u du. 1456 Proof. Notice that as a direct consequence of 9 and 20, we get lim ǫ→0 ǫψ γ = 1. Recall that A ǫ S ǫ k , k ≥ 1 are the jumping time of the Poisson process t 7→ N ǫ,t with parameter φ 1 γǫψ γ. Standard results on Poisson process implies the vague convergence in distribution see also Lemma XI.11.1 in [18] of φ 1 γ −1 P ∞ k= 1 δ A ǫ Sǫ k d r towards the Lebesgue measure on R + as ǫ goes down to 0. Since the limit is deterministic, the convergence holds in probability and a.s. along a decreasing sub-sequence ǫ j , j ∈ N. In particular, if g is a continuous function on R + with compact support hence bounded, we have that a.s. lim j →∞ φ 1 γ j −1 ∞ X k= 1 gA ǫ j S ǫ j k = Z ∞ gu du . Notice that A ǫ s ≥ A s and that a.s. A ǫ s → A s as ǫ goes down to 0. This implies that a.s. A ǫ s , s ≥ 0 converges uniformly on compacts to A s , s ≥ 0. Therefore, if g is continuous with compact support, we have a.s. lim j →+∞ φ 1 γ j −1 ∞ X k= 1 gA ǫ j S ǫ j k − gA S ǫ j k = 0. So we have that lim j →∞ φ 1 γ j −1 ∞ X k= 1 gA S ǫ j k = Z ∞ gu du 51 and this convergence also holds for a càd-làg function g with compact support as the Lebesgue measure does not charge the point of discontinuity of g. Let h be a continuous function defined on R + × M f R + such that hu, µ = 0 for u ≥ t . First let us remark that ρ − S ǫ k = ρ T ǫ k and that m T ǫ k = 0. Using the strong Markov property at time T ǫ k and the second part of Corollary 2.2, we deduce that P-a.s. for all k ∈ N ∗ , C A T ǫ k = T ǫ k . 52 Therefore, as A S ǫ k = A T ǫ k , we have P-a.s. ˜ ρ A Sǫ k = ˜ ρ A T ǫ k = ρ T ǫ k = ρ − S ǫ k . This gives φ 1 γ j −1 ∞ X k= 1 hA S ǫ j k , ρ − S ǫ j k = φ 1 γ j −1 ∞ X k= 1 hA S ǫ j k , ˜ ρ A S ǫ j k and applying the convergence 51 to the càd-làg function gu = hu , ˜ ρ u gives the result of the lemma. We now study K ǫ given by 43. We keep the same notation as in Lemma 3.5. 1457 Lemma 3.9. There exists a deterministic function R s.t. lim ǫ→0 Rǫ = 0 and for all ǫ 0 and µ ∈ M f R + , we have: sup r ≥0 φ 1 γ logK ǫ r, µ − α 1 vr , µ − Z 0,∞ π 1 dℓ 1 1 − wℓ 1 , r, µ ≤ Rǫ. Proof. We have K ǫ r, µ = ψγ ψγ − ψvr, µ γ − vr, µ γ 1 φ 1 γ α 1 γ + γ Z 1 du Z 0,∞ ℓ 1 π 1 dℓ 1 wuℓ 1 , r, µ e −γ1−uℓ 1 = ψγ ψγ − ψvr, µ γ − vr, µ γ 1 φ 1 γ α 1 γ + Z 0,∞ π 1 dℓ 1 Z γℓ 1 e −s ds w ℓ 1 − s γ , r, µ = ψγ ψγ − ψvr, µ γ − vr, µ γ 1 φ 1 γ φ 1 γ − Z 0,∞ π 1 dℓ 1 Z γℓ 1 e −s ds 1 − wℓ 1 − s γ , r, µ . In particular, we have φ 1 γ logK ǫ r, µ = −A 1 + A 2 + A 3 , where A 1 r = φ 1 γ log 1 − ψvr, µψγ , A 2 r = φ 1 γ log1 − vr, µγ, A 3 r = φ 1 γ log 1 − Z 0,∞ π 1 dℓ 1 Z γℓ 1 e −s ds 1 − wℓ 1 − s γ , r, µ φ 1 γ . Thanks to h 3 , there exists a finite constant a 0 s.t. P-a.s. vr, µ a for all r ≥ 0. We deduce there exists ǫ 0 and a finite constant c 0 s.t. P-a.s for all ǫ ∈ 0, ǫ ], sup r ≥0 |A 1 r| ≤ c φ 1 γ ψγ and sup r ≥0 |A 2 r − α 1 vr , µ| ≤ c γ + c| φ 1 γ γ − α 1 |. 53 We have Z 0,∞ π 1 dℓ 1 Z γℓ 1 e −s ds 1 − wℓ 1 − s γ , r, µ − Z 0,∞ π 1 dℓ 1 1 − wℓ 1 , r, µ = Z 0,∞ π 1 dℓ 1 e −γℓ 1 wℓ 1 , r, µ − 1 + Z 0,∞ π 1 dℓ 1 Z ∞ e −s ds w ℓ 1 , r, µ − wℓ 1 − s γ , r, µ 1 {s≤γℓ 1 } . 1458 It is then easy to get, using h 3 and 35, that P-a.s φ 2 γ = sup r ≥0 Z 0,∞ π 1 dℓ 1 Z γℓ 1 e −s ds 1 − wℓ 1 − s γ , r, µ − Z 0,∞ π 1 dℓ 1 1 − wℓ 1 , r, µ converges to 0 as γ goes to infinity. Recall that we assumed that lim γ→∞ φ 1 γ = +∞. Thus, there exist ǫ 0 and a finite constant c 0 s.t. P-a.s for all ǫ ∈ 0, ǫ ], sup r ≥0 A 3 r − Z 0,∞ π 1 dℓ 1 1 − wℓ 1 , r, µ ≤ c φ 1 γ + φ 2 γ. 54 Using 53 and 54, we get that there exists a deterministic function R s.t. P-a.s sup r ≥0 φ 1 γ logK ǫ r, µ − α 1 vr , µ − Z 0,∞ π 1 dℓ 1 1 − wℓ 1 , r, µ ≤ Rǫ, where lim ǫ→0 Rǫ = 0, thanks to 9 and 20. The previous results allow us to compute the following limit. We keep the same notation as in Lemma 3.5. Lemma 3.10. Let ϕ satisfying condition h 1 –h 3 . There exists a sub-sequence ǫ j , j ∈ N decreasing to 0, s.t. P-a.s. lim j →∞ ∞ Y k= 1 K ǫ j A S ǫ j k , ρ − S ǫ k = exp − Z ∞ du α 1 vu + Z 0,∞ π 1 dℓ 1 − wℓ, u, µ . Proof. Notice that thanks to h 1 , the functions v and u, µ 7→ wℓ, u, µ are continuous and that for r ≥ t, vr, µ = 0 and wℓ, r, µ = 1. The result is then a direct consequence of Corollary 3.8 and Lemma 3.9.

3.6 Proof of Theorem 3.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52