Approximation of the functional

For ǫ 0, we consider T ǫ = 0, M ǫ = 0 and for k ≥ 0, M ǫ k+ 1 = inf{i M ǫ k ; m T ǫ k + P i j=M ǫ k +1 e ǫ j 6= 0}, S ǫ k+ 1 = T ǫ k + M ǫ k+ 1 X j=M ǫ k +1 e ǫ j , T ǫ k+ 1 = inf{s S ǫ k+ 1 ; m s = 0}, 36 with the convention inf ; = +∞. For every t ≥ 0, we set τ ǫ t = Z t ds 1 S k ≥1 [T ǫ k ,S ǫ k+ 1 s and F e t = σF t ∪ G τ ǫ t . 37 Notice that T ǫ k and S ǫ k are F e -stopping times. Now we introduce a notation for the process defined above the marks on the intervals ” S ǫ k , T ǫ k — . We set, for a ≥ 0, ¯ H a the level of the first mark, ρ − a the restriction of ρ a strictly below it and ρ + a the restriction of ρ a above it: ¯ H a = sup{t 0, m a [0, t] = 0}, ρ − a = ρ a · ∩ [0, ¯ H a 38 and ρ + a is defined by ρ a = [ρ − a , ρ + a ], that is for any f ∈ B + R + , 〈ρ + a , f 〉 = Z [ ¯ H a , ∞ f r − ¯ H a ρ a d r. 39 For k ≥ 1 and ǫ 0 fixed, we define S k , ǫ = € ρ k , ǫ , m k , ǫ Š in the following way: for s 0 and f ∈ B + R + ρ k , ǫ s = ρ + S ǫ k +s∧T ǫ k , 〈m a k , ǫ s , f 〉 = Z ¯ H Sǫ k ,+ ∞ f r − ¯ H S ǫ k m a S ǫ k +s∧T ǫ k d r, with a ∈ {nod, ske}, and m k , ǫ s = m nod k , ǫ s , m ske k , ǫ s . Notice that ρ k , ǫ s {0} = ρ S ǫ k { ¯ H S ǫ k }. For k ≥ 1, we consider the σ-field F ǫ,k generated by the family of processes S T ǫ ℓ +s∧S ǫ ℓ+1 − , s ℓ∈{0,...,k−1} . Notice that for k ∈ N ∗ F ǫ,k ⊂ F e S ǫ k . 40

3.3 Approximation of the functional

Let S be a marked exploration process and g be a function defined on S. We decompose the path of ρ according to the excursions of the total mass of ρ above its minimum as in Section 1.5, with a slight difference if the initial measure µ charges {0}. More precisely, we perform the same decomposition as in Section1.5 until the height process reaches 0. If µ{0} = 0, then H t = 0 ⇐⇒ ρ t = 0 and the decompositions are the same. If not, there remains a part of the process which 1448 is not decomposed and is gathered in a single excursion defined as a i , b i in Figure 1. We set Y t = 〈ρ t , 1 〉 and J t = inf ≤u≤t Y t . Recall that Y t , t ≥ 0 is distributed under P ∗ µ as a Lévy process with Laplace exponent ψ started at 〈µ, 1〉 and killed when it reaches 0. Let a i , b i , i ∈ K , be the intervals excursion of Y − J away from 0. For every i ∈ K , we define h i = H a i = H b i . We set ˜ K = {i ∈ K ; h i 0} and for i ∈ ˜ K let ¯ S i = ¯ ρ i , ¯ m i be defined by 22 and 23. If the initial measure µ does not charge 0, we have ˜ K = K and we set K ∗ = ˜ K = K . If the initial measure µ charges 0, we consider i 6∈ ˜ K and set K ∗ = ˜ K ∪ {i }, a i = inf{a i ; i ∈ K , h i = 0}, b i = sup{b i ; i ∈ K , h i = 0} and ¯ S i = ¯ ρ i , ¯ m i with 〈 ¯ ρ i t , f 〉 = Z [0,+∞ f x ρ a i0 +t∧˜b i0 d x 〈 ¯ m a i t , f 〉 = Z 0,+∞ f xm a a i0 +t∧b i0 d x with a ∈ {nod, ske}, and ¯ m i t = ¯ m nod i t , ¯ m ske i t . See Figure 1 to get the picture of the different excursions. a i b i a i b i H t Figure 1: Definition of the different excursions We define g ∗ S = X i ∈K ∗ g ¯ S i . 41 Lemma 3.4. P-a.s., we have, for ǫ 0 small enough, X i ∈I ϕA α i , ρ α i − , S i = ∞ X k= 1 ϕA S ǫ k , ρ − S ǫ k , S k , ǫ = ∞ X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ , 42 where the sums have a finite number of non zero terms. 1449 Proof. First equality . By assumptions h 1 and h 3 , as N[T η +∞] +∞, the set I ′ = {i ∈ I , ϕA α i , ρ α i − , S i 6= 0} is finite. Therefore, for ǫ small enough, for every j ∈ I ′ , the mesh defined by 36 intersects the interval α j , β j : in other words, there exists an integer k j such that S ǫ k j ∈ α j , β j and that integer is unique. Moreover, for every j ∈ I ′ , we can choose ǫ small enough so that S ǫ k j T η ρ j , which gives that, for ǫ small enough, ϕA α j , ρ α j − , S j = ϕA α j , ρ α j − , S k j , ǫ . Finally, as the mark at α j is still present at time S ǫ k j , the additive functional A is constant on that time interval and ρ α j − = ρ − S ǫ k j . Therefore, we get ϕA α j , ρ α j − , S j = ϕA S ǫ k j , ρ − S ǫ k j , S k j , ǫ . Second equality . Let j ∈ I ′ . We consider the decomposition of S k j , ǫ according to ρ k j , ǫ above its minimum described at the beginning of this Subsection. We must consider two cases : First case : The mass at α j is on a node. Then, for ǫ 0 small enough, we have T η a i and ϕA S ǫ k j , ρ − S ǫ k j , S k j , ǫ = ϕA S ǫ k j , ρ − S ǫ k j , S i = ϕ ∗ A S ǫ k j , ρ − S ǫ k j , S k j , ǫ as all the terms in the sum that defines ϕ ∗ are zero but for i = i . Second case : The mass at α j is on the skeleton. In that case, we again can choose ǫ small enough so that the interval [T η , L η ] is included in one excursion interval above the minimum of the exploration total mass process of S k j , ǫ . We then conclude as in the previous case.

3.4 Computation of the conditional expectation of the approximation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52