Identification of the law of

and ˜ K given by 56. We can compute ˜ K : ˜ K ν = ψc e −c〈ν,1〉 1 + α 1 N –Z σ e −c〈ρ s ,1 〉 ds ™ + Z 0,∞ π 1 dℓ E ∗ ℓ –Z σ e −c〈ρ s ,1 〉 ds ™ = ψc e −c〈ν,1〉 1 + α 1 c ψc + Z 0,∞ π 1 dℓ Z ℓ d r e −cr N –Z σ e −c〈ρ s ,1 〉 ds ™ = e −c〈ν,1〉 ψc + α 1 c + Z 0,∞ π 1 dℓ1 − e −cℓ = ψ c e −c〈ν,1〉 , where we used 59 and the excursion decomposition for the second equality, and ψ = ψ + φ 1 for the last one. Thus, the process N t , t ≥ 0 with for t ≥ 0 N t = e −c〈 ˜ ρ t ∧ ˜ σ ,1 〉 −ψ c Z t ∧ ˜ σ e −c〈 ˜ ρ u ,1 〉 du is under P µ an ˜ F -martingale. Notice that ˜ σ = inf{s ≥ 0; 〈 ˜ ρ s , 1 〉 = 0}. Let X = X t , t ≥ 0 be under P ∗ x a Lévy process with Laplace transform ψ started at x 0 and stopped when it reached 0. The two non-negative càd- làg processes 〈 ˜ ρ t ∧ ˜ σ , 1 〉, t ≥ 0 and X solves the martingale problem: for any c ≥ 0, the process defined for t ≥ 0 by e −cY t ∧σ′ −ψ c Z t ∧σ ′ e −cY s ds , where σ ′ = inf{s ≥ 0; Y s ≤ 0}, is a martingale. From Corollary 4.4.4 in [23], we deduce that those two processes have the same distribution. To finish the proof, notice that the total mass process of ρ under P ∗ µ is distributed as X under P ∗ 〈µ,1〉 .

4.2 Identification of the law of

˜ ρ To begin with, let us mention some useful properties of the process ˜ ρ. Lemma 4.3. We have the following properties for the process ˜ ρ. i ˜ ρ is a càd-làg Markov process. ii The sojourn time at 0 of ˜ ρ is 0. iii 0 is recurrent for ˜ ρ. Proof. i This is a direct consequence of the strong Markov property of the process ρ, m. ii We have for r 0, with the change of variable t = A s , a.s. Z r 1 { ˜ ρ t =0} d t = Z r 1 {ρ Ct =0} d t = Z C r 1 {ρ s =0} dA s = Z C r 1 {ρ s =0} ds = 0, 1463 as the sojourn time of ρ at 0 is 0 a.s. iii Since ˜ σ = A σ and σ +∞ a.s., we deduce that 0 is recurrent for ˜ ρ a.s. Since the processes ˜ ρ and ρ are both Markov processes, to show that they have the same law, it is enough to show that they have the same one-dimensional marginals. We first prove that result under the excursion measure. Proposition 4.4. For every λ 0 and every non-negative bounded measurable function f , N   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = N    Z σ e −λt−〈ρ t , f 〉 d t    . Proof. On one hand, we compute, using the definition of the pruned process ˜ ρ, N   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = N   Z A σ e −λt−〈ρ Ct , f 〉 d t   . We now make the change of variable t = A u to get N   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = N –Z σ e −λA u e −〈ρ u , f 〉 dA u ™ = N –Z σ e −λA u e −〈ρ u , f 〉 1 {m u =0} du ™ . By a time reversibility argument, see Lemma 1.7, we obtain N   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = N –Z σ 1 {m u =0} e −〈η u , f 〉 e −λA σ −A u du ™ = N –Z σ 1 {m u =0} e −〈η u , f 〉 E ∗ ρ u ,0 ” e −λA σ — du ™ = N –Z σ 1 {m u =0} e −〈η u , f 〉−ψ −1 λ〈ρ u ,1 〉 du ™ , where we applied Lemma 2.1 i for the last equality. Now, using Proposition 1.9, we have N   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = Z ∞ d a e −αa M a h 1 {m=0} e −〈ν, f 〉−ψ −1 λ〈µ,1〉 i . Using usual properties of point Poisson measures, we have, with c = α 1 + R 0,∞ ℓ π 1 dℓ, M a ” 1 {m=0} F µ, ν — = e −ca M a ” F µ , ν — , 1464 where with the notations of Proposition 1.9, for any f ∈ B + R + 〈µ , f 〉 = Z N d x dℓ du 1 [0,a] xuℓ f x + β Z a f r d r , 〈ν , f 〉 = Z N d x dℓ du 1 [0,a] x1 − uℓ f x + β Z a f r d r . As α = α + c, we have N   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = Z ∞ d a e −α a M a h e −〈ν , f 〉−ψ −1 λ〈µ ,1 〉 i . Proposition 3.1.3 in [22] directly implies that the left-hand side of the previous equality is equal to N    Z σ e −〈η t , f 〉−ψ −1 λ〈ρ t ,1 〉 d t   . On the other hand, similar computations as above yields that this quantity is equal to N    Z σ e −λt−〈ρ t , f 〉 d t   . This ends the proof. Now, we prove the same result under P ∗ µ,0 , that is: Proposition 4.5. For every λ 0, f ∈ B + R + bounded and every finite measure µ, E ∗ µ,0   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = E ∗ µ    Z σ e −λt−〈ρ t , f 〉 d t    . Proof. From the Poisson representation, see Lemma 1.6, and using notations of this Lemma and of 28 we have E ∗ µ,0   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = E ∗ µ,0 –Z σ e −λA u −〈ρ u , f 〉 dA u ™ = E ∗ µ,0   X i ∈J e −λA αi −〈k −Iαi , f 〉 Z σ i e −〈ρ i s , f −Iαi 〉−λA i s dA i s   , where the function f r is defined by f r x = f H µ r + x and H µ r = Hk r µ is the maximal element of the closed support of k r µ see 12. We recall that −I is the local time at 0 of the reflected process X − I, and that τ r = inf{s; −I s r} is the right continuous inverse of −I. From excursion formula, and using the time change −I s = r or equivalently τ r = s, we get E ∗ µ,0   Z ˜ σ e −λt−〈 ˜ ρ t , f 〉 d t   = E ∗ µ,0 –Z τ 〈µ,1〉 d −I s e −〈k −Is µ, f 〉−λA s G −I s ™ = E ∗ µ,0   Z 〈µ,1〉 d r e −〈k r µ, f 〉−λA τr Gr   , 60 1465 where the function Gr is given by Gr = N –Z σ e −〈ρ s , f r 〉−λA s dA s ™ = N   Z ˜ σ e −λt−〈 ˜ ρ t , f r 〉 d t   . The same kind of computation gives E ∗ µ    Z σ e −λt−〈ρ t , f 〉 d t    = E   Z 〈µ,1〉 d r e −〈k r µ, f 〉−λτ r G r   61 where the function G is defined by G r = N    Z σ e −λs−〈ρ s , f r 〉 ds    and τ is the right-continuous inverse of the infimum process −I of the Lévy process with Laplace exponent ψ . Proposition 4.4 says that the functions G and G are equal. Moreover, as the total mass processes have the same law see Corollary 4.2, we know that the proposition is true for f constant. And, for f constant, the functions G and G are also constant. Therefore, we have for f constant equal to c ≥ 0, E ∗ µ,0   Z 〈µ,1〉 d r e −c〈µ,1〉−r e −λA τr   = E   Z 〈µ,1〉 d r e −c〈µ,1〉−r e −λτ r   . As this is true for any c ≥ 0, uniqueness of the Laplace transform gives the equality E ∗ µ,0 ” e −λA τr — = E h e −λτ r i d r − a.e. In fact this equality holds for every r by right-continuity. Finally as G = G , we have thanks to 60 and 61, that, for every bounded non-negative measur- able function f , Z 〈µ,1〉 d r e −〈k r µ, f 〉 E ∗ µ,0 ” e −λA τr — Gr = Z 〈µ,1〉 d r e −〈k r µ, f 〉 E h e −λτ r i G r which ends the proof. Corollary 4.6. The process ˜ ρ under P ∗ µ,0 is distributed as ρ under P ∗ µ . Proof. Let f ∈ B + R + bounded. Proposition 4.5 can be re-written as Z +∞ e −λt E ∗ µ,0 ” e −〈 ˜ ρ t , f 〉 1 {t≤ ˜ σ} — d t = Z +∞ e −λt E ∗ µ h e −〈ρ t , f 〉 1 {t≤σ } i d t . By uniqueness of the Laplace transform, we deduce that, for almost every t 0, E ∗ µ,0 ” e −〈 ˜ ρ t , f 〉 1 {t≤ ˜ σ} — = E ∗ µ h e −〈ρ t , f 〉 1 {t≤σ } i . 1466 In fact this equality holds for every t by right-continuity. As the Laplace functionals characterize the law of a random measure, we deduce that, for fixed t 0, the law of ˜ ρ t under P ∗ µ,0 is the same as the law of ρ t under P ∗ µ . The Markov property then gives the equality in law for the càd-làg processes ˜ ρ and ρ . Proof of Theorem 2.3. 0 is recurrent for the Markov càd-làg processes ˜ ρ and ρ . These two pro- cesses have no sojourn time at 0, and when killed on the first hitting time of 0, they have the same law, thanks to Lemma 4.6. From Theorem 4.2 of [17], Section 5, we deduce that ˜ ρ under P µ,0 is distributed as ρ under P µ . 5 Law of the excursion lengths Recall ˜ σ = R σ 1 {m s =0} ds denotes the length of the excursion of the pruned exploration process. We can compute the joint law of ˜ σ, σ. This will determine uniquely the law of ˜ σ conditionally on σ = r. Proposition 5.1. For all non-negative γ, κ, the value v defined by v = N ” 1 − e −ψγσ−κ ˜ σ — is the unique non-negative solution of the equation ψ v = κ + ψ γ. Proof. Excursion theory implies that the special Markov property, Theorem 3.2, also holds under N, with the integration of u over [0, ˜ σ = A σ ] instead of [0, ∞. Taking φS = ψγσ, we have v = N ” 1 − e −κ ˜ σ−ψγσ — = N h 1 − e −κ+ψγ ˜ σ−ψγ R σ 1 {ms6=0} ds i = N 1 − e −κ+ψγ ˜ σ− ˜ σ α 1 N[1 −e −ψγσ ]+ R 0,+∞ π 1 dℓ1−E ∗ ℓ [e −ψγσ ] . Notice that σ under P ∗ ℓ is distributed as τ ℓ , the first time for which the infimum of X , started at 0, reaches −ℓ. Since τ ℓ is distributed as a subordinator with Laplace exponent ψ −1 at time ℓ, we have E ∗ ℓ [e −ψγσ ] = E ” e −ψγτ ℓ — = e −ℓγ . Thanks to 15, we get N[1 − e −ψγσ ] = γ. We deduce that v = N 1 − e −κ+ψγ ˜ σ− ˜ σ α 1 γ+ R 0,+∞ π 1 dℓ1−e −γℓ = N ” 1 − e −κ+ψ γ ˜ σ — = ψ −1 κ + ψ γ. Since ψ is increasing and continuous, we get the result. 1467 6 Appendix We shall present in a first subsection, how one can extend the construction of the Lévy snake from [22] to a weighted Lévy snake, when the height process may not be continuous and the lifetime process is given by the total mass of the exploration process instead of the height of the exploration process in [22]. Then, using this construction, we can define in a second subsection a general Lévy snake when the height process is not continuous.

6.1 Weighted Lévy snake

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52