Computation of the conditional expectation of the approximation

Proof. First equality . By assumptions h 1 and h 3 , as N[T η +∞] +∞, the set I ′ = {i ∈ I , ϕA α i , ρ α i − , S i 6= 0} is finite. Therefore, for ǫ small enough, for every j ∈ I ′ , the mesh defined by 36 intersects the interval α j , β j : in other words, there exists an integer k j such that S ǫ k j ∈ α j , β j and that integer is unique. Moreover, for every j ∈ I ′ , we can choose ǫ small enough so that S ǫ k j T η ρ j , which gives that, for ǫ small enough, ϕA α j , ρ α j − , S j = ϕA α j , ρ α j − , S k j , ǫ . Finally, as the mark at α j is still present at time S ǫ k j , the additive functional A is constant on that time interval and ρ α j − = ρ − S ǫ k j . Therefore, we get ϕA α j , ρ α j − , S j = ϕA S ǫ k j , ρ − S ǫ k j , S k j , ǫ . Second equality . Let j ∈ I ′ . We consider the decomposition of S k j , ǫ according to ρ k j , ǫ above its minimum described at the beginning of this Subsection. We must consider two cases : First case : The mass at α j is on a node. Then, for ǫ 0 small enough, we have T η a i and ϕA S ǫ k j , ρ − S ǫ k j , S k j , ǫ = ϕA S ǫ k j , ρ − S ǫ k j , S i = ϕ ∗ A S ǫ k j , ρ − S ǫ k j , S k j , ǫ as all the terms in the sum that defines ϕ ∗ are zero but for i = i . Second case : The mass at α j is on the skeleton. In that case, we again can choose ǫ small enough so that the interval [T η , L η ] is included in one excursion interval above the minimum of the exploration total mass process of S k j , ǫ . We then conclude as in the previous case.

3.4 Computation of the conditional expectation of the approximation

Lemma 3.5. For every ˜ F ∞ -measurable non-negative random variable Z, we have E  Z exp − ∞ X k= 1 ϕ ∗  A S ǫ k , ρ − S ǫ k , S k , ǫ ‹   = E  Z ∞ Y k= 1 K ǫ A S ǫ k , ρ − S ǫ k   , where γ = ψ −1 1ǫ and K ǫ r, µ = ψγ φ 1 γ γ − vr, µ ψγ − ψvr, µ α 1 + Z 1 du Z 0,∞ ℓ 1 π 1 dℓ 1 wuℓ 1 , r, µ e −γ1−uℓ 1 . 43 where w ℓ, r, µ = E ∗ ℓ ” e −ϕr,µ,· — and vr , µ = N ” 1 − e −ϕr,µ,· — . 44 1450 Proof. This proof is rather long and technical. We decompose it in several steps. Step 1. We introduce first a special form of the random variable Z. Let p ≥ 1. Recall that H t ,t ′ denotes the minimum of H between t and t ′ and that ¯ H t defined by 38 represents the height of the lowest mark. We set ξ p −1 d = sup n t T ǫ p −1 ; H t = H T ǫ p −1 ,S ǫ p o , ξ p g = inf n t T ǫ p −1 ; H t = ¯ H S ǫ p and H t ,S ǫ p = H t o . ξ p −1 d is the time at which the height process reaches its minimum over [T ǫ p −1 , S ǫ p ]. By definition of T ǫ p −1 , m T ǫ p −1 = 0 there is no mark on the linage of the corresponding individual. On the contrary, m S ǫ p 6= 0, m S ǫ p { ¯ H S ǫ p } 6= 0 but m S ǫ p [0, ¯ H S ǫ p = 0. In other words, at time S ǫ p , some mark exists and the lowest mark is situated at height ¯ H S ǫ p . Roughly speaking, ξ p g is the time at which this lowest mark appears, see figure 3.4 to help understanding. Let us recall that, by the snake property 21, m ξ p −1 d = 0 and consequently, ξ p −1 d ξ p g a.s. T ǫ p −1 S ǫ p ξ p −1 d ξ p g H t ¯ H S ǫ p Figure 2: Position of various random times We consider a bounded non-negative random variable Z of the form Z = Z Z 1 Z 2 Z 3 , where Z ∈ F ǫ,p−1 , Z 1 ∈ σS u , T ǫ p −1 ≤ u ξ p −1 d , Z 2 ∈ σS u , ξ p −1 d ≤ u ξ p g and Z 3 ∈ σS T ǫ k +s∧S ǫ k+ 1 − , s ≥ 0, k ≥ p are bounded non-negative. Step 2. We apply the strong Markov property to get rid of terms which involve S ǫ p and T ǫ p . We first apply the strong Markov property at time T ǫ p by conditioning with respect to F e T ǫ p . We obtain E  Z exp − p X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ   = E  Z Z 1 Z 2 exp − p X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ E ρ T ǫ p ,0 Z 3   . 1451 Recall notation 38 and 39. Notice that ρ T ǫ p = ρ − S ǫ p , and consequently ρ T ǫ p is measurable with respect to F e S ǫ p . So, when we use the strong Markov property at time S ǫ p , we get thanks to 40 E  Z exp − p X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ   = E  Z Z 1 Z 2 exp − p −1 X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ E ∗ ρ + Sǫ p e −ϕ ∗ A Sǫ p , ρ − Sǫ p , · E ρ − Sǫ p [Z 3 ]   . Using the strong Markov property at time T ǫ p −1 , and the lack of memory for the exponential r.v., we get E  Z exp − p X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ   = E  Z exp − p −1 X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ φ  A S ǫ p −1 , ρ − S ǫ p −1 , ρ T ǫ p −1 ‹   , 45 with φb, µ, ν = E ∗ ν Z 1 Z 2 E ∗ ρ − τ′ ” e −ϕ ∗ b+A τ′ , µ,· — E ∗ ρ − τ′ [Z 3 ] , 46 where τ ′ is distributed under P ∗ ν as S ǫ 1 . Step 3. We compute the function φ given by 46. To simplify the formulas, we set F b ′ , µ ′ = E ∗ µ ′ ” e −ϕ ∗ b+b ′ , µ,· — , G µ ′ = E ∗ µ ′ [Z 3 ] the dependence on b and µ of F is omitted so that φb, µ, ν = E ∗ ν ” Z 1 Z 2 F A τ ′ , ρ + τ ′ Gρ − τ ′ — . 47 The proof of the following technical Lemma is postponed to the end of this Sub-section. Lemma 3.6. We set qdu, d ℓ 1 = α 1 δ 0,0 dudℓ 1 + du ℓ 1 π 1 dℓ 1 and by convention π{0} = 0. We have: φb, µ, ν = E ν Z 1 Z 2 Γ F A τ ′ Γ 1 G ρ − τ ′ , 48 where for a non-negative function f defined on [ 0, ∞ × M f R + Γ f a = Z [0,1]×[0,∞ qdu , d ℓ 1 Z Mdρ ′ , d η ′ , d m ′ e −γ〈ρ ′ ,1 〉−γuℓ 1 f a , η ′ + 1 − uℓ 1 δ and for f = 1, Γ 1 does not depend on a. 1452 We now use the particular form of F to compute Γ F . Using 41 and Lemma 1.6, we get F a , µ ′ = E ∗ µ ′ ” e −ϕ ∗ b+a,µ,· — = E ∗ µ ′ {0} ” e −ϕb+a,µ,· — e −µ ′ 0,∞N [ 1 −e −ϕb+a,µ,· ] . Using w and v defined in 44, we get M s ” e −γ〈ρ,1〉−γuℓ 1 F a , η + 1 − uℓ 1 δ — = w1 − uℓ 1 , b + a, µ e −γuℓ 1 M s ” e −γ〈ρ,1〉 e −vb+a,µ〈η,1〉 — = w1 − uℓ 1 , b + a, µ e −γuℓ 1 e −s ψγ−ψvb+a,µ γ−vb+a,µ −α . We deduce that Γ F a = γ − vb + a, µ ψγ − ψvb + a, µ α 1 + Z 1 du Z 0,∞ ℓ 1 π 1 dℓ 1 wuℓ 1 , b + a, µ e −γ1−uℓ 1 , and with F = 1, Γ 1 = γ ψγ φ 1 γ γ = φ 1 γ ψγ . Finally, plugging this formula in 48 and using the function K ǫ introduced in 43, we have φb, µ, ν = E ν [Z 1 Z 2 K ǫ b + A τ ′ , µGρ − τ ′ ]. 49 Step 4. Induction. Plugging the expression 49 for φ in 45, and using the arguments backward from 45 we get E  Z exp − p X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ   = E  Z exp − p −1 X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ K ǫ A S ǫ p , ρ − S ǫ p   . In particular, from monotone class Theorem, this equality holds for any non-negative Z measurable w.r.t. the σ-field ¯ F ǫ ∞ = σS C t , t ∈ [A T ǫ k , A S ǫ k+ 1 ], k ≥ 0. Notice that K ǫ A S ǫ p , ρ − S ǫ p is measurable w.r.t. ¯ F ∞ . So, we may iterate the previous argument and let p goes to infinity to finally get that for any non-negative random variable Z ∈ ¯ F ∞ , we have E  Z exp − ∞ X k= 1 ϕ ∗ A S ǫ k , ρ − S ǫ k , S k , ǫ   = E  Z ∞ Y k= 1 K ǫ A S ǫ k , ρ − S ǫ k   . Intuitively, ¯ F ǫ ∞ is the σ-field generated by ˜ F ∞ and the mesh [A T ǫ k , A S ǫ k+ 1 ], k ≥ 0. As ¯ F ǫ ∞ contains ˜ F ∞ , the Lemma is proved. Proof of Lemma 3.6. We consider the Poisson decomposition of S under P ∗ ν given in Lemma 1.6. Notice there exists a unique excursion i 1 ∈ K s.t. a i 1 τ ′ b i 1 . By hypothesis on Z 1 , under P ∗ ν , we can write Z 1 = H 1 ν, P i ∈K ;a i a i1 δ h i , ¯ S i for a measurable func- tion H 1 . We can also write Z 2 = H 2 ρ u , ξ d ≤ u ξ 1 g for a measurable function H 2 as m u = 0 for 1453 u ∈ [ξ d , ξ 1 g . Then, using compensation formula in excursion theory, see Corollary IV.11 in [12], we get φb, µ, ν = E     Z νd v 1 {τ ′ X s v σS s } H 1 ν, X s v δ s,S s h ν F r , X s v A σS s S s     , 50 where P s δ s , S s is a Poisson point measure with intensity νdsN[dS ], σS = inf{r 0, S r = 0}, A t S s = R t d v ′ 1 {m v′ S s =0} and h ν F r, a = N h F a + A τ ′ , ρ + τ ′ G[k r ν, ρ − τ ′ ]H 2 [k r ν, ρ t ], 0 ≤ t ξ 1 g 1 {τ ′ σ} i . Let R k , k ≥ 1 be the increasing sequence of the jumping times of a Poisson process of intensity 1ǫ, independent of S . Then, by time-reversal, we have h ν F r, a = N h +∞ X k= 1 1 {m Rk 6=0} 1 {∀k ′ k, m R k′ =0} F a + A σ − A R k , η + R k G[k r ν, η − R k ]H 2 [k r ν, η u ], τ k u ≤ σ i , where τ k = inf{t R k ; m t = 0}. We then apply the strong Markov property at time R k and the Poisson representation of the marked exploration process to get h ν F r, a = N h +∞ X k= 1 1 {m Rk 6=0} G[k r ν, η − R k ] E ∗ ρ Rk ,m Rk • 1 {∀k ′ 0, m R k′ =0} F a + A σ , η ′ H 2 [k r ν, η u ], τ u ≤ σ ˜ |η ′ =η + Rk i , where τ = inf{t 0; m t = 0}. Now, let us remark that, if m 6= 0, then m s 6= 0 for s ∈ [0, τ ] and A τ = 0. Therefore, m R 1 = 0 implies R 1 τ . The strong Markov property at time τ gives, with η ′ = η + R k , 1 {m Rk 6=0} E ∗ ρ Rk ,m Rk • 1 {∀k ′ 0, m R k′ =0} F a + A σ , η ′ H 2 [k r ν, η u ], τ u ≤ σ ˜ = 1 {m Rk 6=0} P ∗ ρ + Rk R 1 σE ∗ ρ − Rk • 1 {∀k ′ 0, m R k′ =0} F a + A σ , η ′ H 2 [k r ν, η u ], 0 u ≤ σ ˜ . We have, using the Poisson representation of Lemma 1.6 and 15, that P ∗ ρ + Rk R 1 σ = E ∗ ρ + Rk ” e −σǫ — = e −γ〈ρ + Rk ,1 〉 , as γ = ψ −1 1ǫ. We obtain h ν F r, a = N   +∞ X k= 1 1 {m Rk 6=0} e G ρ − R k , η − R k , ρ + R k , η + R k   , 1454 where e G ρ, η, ρ ′ , η ′ = G[k r ν, η] e −γ〈ρ ′ ,1 〉 E ∗ ρ • 1 {∀k ′ 0, m R k′ =0} F a + A σ , η ′ H 2 [k r ν, η], 0 u ≤ σ ˜ . As P k ≥1 δ R k is a Poisson point process with intensity 1 ǫ, we deduce that h ν F r, a = 1 ǫ N –Z σ d t 1 {m t 6=0} e G ρ − t , η − t , ρ + t , η + t ™ . Using Proposition 1.9, we get h ν F r, a = 1 ǫ Z ∞ d a e −αa M a ” 1 {m6=0} e G µ − , ν − , µ + , ν + — . For r 0 and µ a measure on R + , let us define the measures µ ≥r and µ r by 〈µ ≥r , f 〉 = Z f x − r1 {x≥r} µd x and 〈µ r , f 〉 = Z f x 1 {xr} µd x. Using Palm formula, we get M a ” 1 {m6=0} e G µ − , ν − , µ + , ν + — = Z a d r Z [0,1]×[0,∞ qdu , d ℓ 1 M a ” 1 {m[0,r=0} e G µ r , ν r , µ ≥r + uℓ 1 δ , ν ≥r + 1 − uℓ 1 δ — . Using the independence of the Poisson point measures, we get M a ” 1 {m[0,r=0} e G µ r , ν r , µ ≥r + uℓ 1 δ , ν ≥r + 1 − uℓ 1 δ — = Z M r dµ, dν, d m Z M a −r dρ ′ , d η ′ , d m ′ 1 {m=0} e G µ, ν, ρ ′ + uℓ 1 δ , η ′ + 1 − uℓ 1 δ . We deduce that h ν F r, a = 1 ǫ Z [0,1]×[0,∞ qdu , d ℓ 1 Z Mdρ, dη, d m Z Mdρ ′ , d η ′ , d m ′ 1 {m=0} e G ρ, η, ρ ′ + uℓ 1 δ , η ′ + 1 − uℓ 1 δ . Using this and 50 with similar arguments in reverse order, we obtain 48. 1455

3.5 Computation of the limit

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52