y − x + α z + D Moreover, the second derivative D z −

Proof of corollary 3.6 Thanks to proposition 3.4, D satisfies the assumptions of theorem 3.3. Thus equation 2 has a unique strong solution X with local time L and reflection direction n. Using proposition 3.4 again, there are non-unique coefficients c i ω, s ∈ [0, 1 β ] for each normal vector in the reflection term to be written as a convex combination : n ω, s = X ∂ D i ∋Xω,s c i ω, sn i Xω, s 3 Let us prove that there exists a measurable choice of the c i ’s : The map n resp. n i X is only defined for ω, s such that Xω, s ∈ ∂ D resp. Xω, s ∈ ∂ D i . We extend these maps by zero to obtain measurable maps on Ω × [0, T ] for an arbitary positive T . Note that equality 3 holds for the extended maps too. For each ω, s, we define the map f ω,s on R p by f ω,s c = | P p i=1 c i n i Xω, s − nω, s|. For a positive integer k, let R k = {0, 1 k , 2 k , . . . , 1 k ⌊ k β ⌋} p denote the 1 k -lattice on [0, 1 β ] p endowed with lexicographic order. The smaller point in R k for which f ω,s reaches its minimum value is c k ω, s = X c ∈R k c Y c ′ ∈R k ,c ′ 6=c 1I f ω,s c ′ f ω,s c + 1I f ω,s c ′ = f ω,s c1I c ′ c c k is a measurable map on Ω × [0, T ] and 3 implies that | f ω,s c k ω, s| ≤ p k . Taking coordi- nate after coordinate the limsup of the sequence of c k k , we obtain a measurable process c ∞ satisfying 3. Finally, let L i = Z · 1I ∂ D i Xsc i s dLs. L i has bounded variations on each [0, T ] since the c i ’s are bounded, and it is a local time in the sense of remark 2.1. Here, strong uniqueness holds for process X and for the reflection term p X i=1 Z t n i Xsd L i s. The uniqueness of this term does not imply uniqueness of the L i ’s, because the c i ’s are not unique. „ Proof of proposition 3.4 Let x ∈ ∂ D. Since D = T p i=1 D i , the set {i s.t. x ∈ ∂ D i } is not empty. Since D i satisfies U ES α i restricted to D, for each y ∈ D i y − x.n i x + 1 2 α i |y − x| 2 ≥ 0, and consequently : ∀i s.t. ∂ D i ∋ x ∀y ∈ D y − x.n i x + 1 2 min ∂ D j ∋x α j |y − x| 2 ≥ 0 Summing over i for non-negative c i ’s such that P ∂ D i ∋x c i ≤ 1 β we obtain : ∀y ∈ D X ∂ D j ∋x c i n i x.y − x + 1 2 β min ∂ D i ∋x α j |y − x| 2 ≥ 0 151 which implies that P ∂ D j ∋x c i n i x belongs to the set N

x,

α of normal vectors on the boundary of D, for α = β min ∂ D j ∋x α j . Thanks to remark 3.5, this proves the inclusion N ′ x :=    n ∈ S m , n = X ∂ D i ∋x c i n i x with c i ≥ 0    ⊂ N

x, α

Let us prove the converse inclusion. For i such that ∂ D i ∋ x, the boundary ∂ D i is at least C 2 in

D, hence there exist a closed ball Bx, η

x i with η x i 0, and a C 2 function f x i : B x, η x i −→ R with non-vanishing derivative, such that B x, η x i ∩ D i = Bx, η x i ∩ {y ∈ R m , f x i y ≥ 0} there even exists an orthonormal coordinate system in which f x i y is the difference between the last coordinate of y and a C 2 function of the other coordinates, but we do not need this precise form here. The Taylor-Lagrange formula provides : ∀z s.t. |z| ≤ η x i f x i x + z = f x i x + ∇ f x i x.z + 1 2

z.D

2 f x i z ∗ z for some z ∗ ∈ Bx, η x i depending on z. By definition of f x i , x ∈ ∂ D i implies f x i x = 0 and ∇ f x i x = |∇ f x i

x|n

i

x. Moreover, the second derivative D

2 f x i is continuous hence bounded on the closed ball by some constant ||D 2 f x i || ∞ : ∀z s.t. |z| ≤ η x i f x i x + z ≥ |∇ f x i

x|n

i

x.z −

||D 2 f x i || ∞ 2 |z| 2 For any ǫ 0 and for δ i ǫ x = min ‚ η x i , 2 |∇ f x i x| ||D 2 f x i || ∞ ǫ Œ we obtain : |z| ≤ δ i ǫ x and z.n i x ≥ ǫ|z| =⇒ f x i x + z ≥ 0 =⇒ x + z ∈ D i Consequently, for N ǫ = \ ∂ D i ∋x {z, n i x.z ≥ ǫ|z|} we have : {x + z, z ∈ N

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52