˘ x ˘ x For another configuration y ∈ ∂ D n Linear molecule model

For z ∈ B0, ˘ x i + ˘ x j : | y i + z i − y j + z j | − ˘y i + ˘ z i + ˘ y j + ˘ z j ≤ |z i | + |z j | − 2˘x i + ˘ x j + |˘z i | + |˘z j | ≤ 2|z| − 2˘x i + ˘ x j thus y + z ∈ D c i j . This proves that B

y, ˘ x

i + ˘ x j ⊂ D c i j , hence N D i j x = N D i j

x, ˘ x

i + ˘ x j . The general Uniform Exterior Sphere property does not hold, but the property restricted to A g holds for D i j with constant α i j = 2r − because ˘ x i + ˘ x j ≥ 2r − for x ∈ A g . For x ∈ A g such that x ∈ ∂ D i j , let us define l i j x = n i j

x. For another configuration y ∈ ∂ D

i j : l i j x . n i j y = x i − x j 2 ˘ x i + ˘ x j . y i − y j 2 ˘ y i + ˘ y j + x j − x i 2 ˘ x i + ˘ x j . y j − y i 2 ˘ y i + ˘ y j +− 1 2 2 +− 1 2 2 = x i − x j . y i − y j 2 ˘ x i + ˘ x j ˘ y i + ˘ y j + 1 2 Since x i − x j . y i − y j ≥ |x i − x j | 2 − |x i − x j || y i − x i − y j + x j | ≥ |x i − x j | 2 − p 2 |x i − x j ||x − y| and ˘ y i + ˘ y j ≤ ˘x i + ˘ x j + p 2 |x − y|, this leads to : l i j x . n i j y ≥ |x i − x j | − p 2 |x − y| 2 ˘ x i + ˘ x j + p 2 |x − y| + 1 2 = ˘ x i + ˘ x j ˘ x i + ˘ x j + p 2 |x − y| Consequently l i j x . n i j y ≥ Æ 1 − β 2 i j as soon as |x − y| ≤ ˘ x i + ˘ x j p 2 ‚ 1 Æ 1 −β 2 i j − 1 Œ . This proves that D i j has the Uniform Normal Cone property restricted to A g with any constant β i j ∈]0, 1[ and with δ i j = p 2r − ‚ 1 Æ 1 −β 2 i j − 1 Œ 0. In particular, the property holds for any β i j with δ i j = r − β 2 i j p 2. For x ∈ ∂ A g , let us construct a unit vector l x satisfying assumption iv in proposition 3.4. We first have to define clusters of colliding globules : C x i = ¦ j s.t. |x i − x j 1 | = ˘x i + ˘ x j 1 , |x j 1 − x j 2 | = ˘x j 1 + ˘ x j 2 , . . . , |x j k − x j | = ˘x j k + ˘ x j for some j 1 , . . . , j k © and their centers of gravity x ′ i = 1 ♯C x i X j ∈C x i x j . Let l x = v |v| with for each i : v i = x i − x ′ i and ˘ v i = r − r + − r − r + + r − 2 − ˘x i We need an upper bound on the norm of v. Since x ∈ A g , each ˘ x i is larger than r − and smaller than r + , thus | r + +r − 2 − ˘x i | ≤ r + −r − 2 . Moreover, if j belongs to the cluster C x i around the i th globule, the distance between x i and x j is at most 2n − 1r + , thus |v i | ≤ 2n − 1r + : |v| 2 = n X i=1 |v i | 2 + r − r + − r − 2 n X i=1 r + + r − 2 − ˘x i 2 ≤ 4nn − 1 2 r 2 + + n r 2 − 4 4n 3 r 2 + We also need lower bounds on the scalar products of v with normal vectors on the boundaries of the D i+ , D i − , D i j . If ˘ x i = r + , then ˘ v i = r − r + −r − r − −r + 2 thus v.n i+ = r − 2 . Similarly, if ˘ x i = r − , then

v.n

i − = r − 2 . If |x i − x j | = ˘x i + ˘ x j then x ′ i = x ′ j thus :

v.n

i j x = x i − x ′ i . x i −x j 2 ˘ x i + ˘ x j + x j − x ′ j . x j −x i 2 ˘ x i + ˘ x j − 1 2 r − r + −r − r + +r − 2 − ˘x i − 1 2 r − r + −r − r + +r − 2 − ˘x j = x i − x j . x i −x j 2 ˘ x i + ˘ x j − 1 2 r − r + −r − r + + r − − ˘x i − ˘x j = r + 2r + −r − ˘ x i + ˘ x j − r − r + +r − 2r + −r − ≥ r − 2 155 because ˘ x i + ˘ x j ≥ 2r − . This proves that assumption iv in proposition 3.4 is satisfied with β = r − 2 p 4n 3 r 2 + = r − 4r + n p n . The inequality β p 2 maxmax i β i+ , max i β i − , max i, j β i j holds as soon as β i j β 2 2. As seen above, the Uniform Normal Cone property restricted to A g holds for D i j with constants β i j = β 2 4 and δ i j = r − β 4 16 p 2 . So, thanks to proposition 3.4, we obtain that A g has the Uniform Exterior Sphere property with constant α A g = 2r − β = r 2 − 2r + n p n and the Uniform Normal Cone property with constants δ A g = r − β 4 32 p 2 = r 5 − 2 13 p 2r 4 + n 6 and β A g = p 1 − β 2 2 = Ç 1 − r 2 − 64r 2 + n 3 „ Proof of theorems 2.2 and 2.4 As seen in the proof of proposition 4.1, the set A g of allowed globules configurations satisfies the assumptions of corollary 3.6. If the diffusion coefficients σ i and ˘ σ i and the drift coefficients b i and ˘b i are bounded and Lipschitz continuous on A g for 1 ≤ i ≤ n, then the functions σ x =          σ 1 x · · · · · · ˘ σ 1 x ... .. . .. . ... ... ... .. . .. . ... σ n x · · · · · · ˘ σ n x          and bx =         b 1 x ˘b 1 x .. . b n x ˘b n x         are bounded and Lipschitz continuous as well. Thus, for m = nd + 1 and D = A g , equation 1 has a unique strong solution

X, and there exists a decomposition of the reflection term

R · nsdLs so that it is equal to    n X j=1 Z · X i − X j 2 ˘ X i + ˘ X j sd L i j s , − n X j=1 Z · 1 2 d L i j s − Z · d L i+ s + Z · d L i − s    1 ≤i≤n with L i j = Z · 1I |X i s−X j s|= ˘ X i s+ ˘ X j s c i j s dLs, L + i = Z · 1I ˘ X i s=r − c i+ s dLs and L − i = Z · 1I ˘ X i s=r + c i − s dLs for some measurable choice of the c i j , c i+ , c i − . For convenience, the local time 1 2 L i j has been used in equation E g , and denoted by L i j again. For an even C 2 function ϕ on R d+1 with bounded derivatives, the function Φ x = P 1 ≤i j≤n ϕx i − x j is C 2 with bounded derivatives and the drift function in equation E ϕ g is equal to − 1 2 ∇Φ. Thus E ϕ g has a unique strong solution. Moreover, if Z = R A g e −Φx d x +∞, theorem 3.3 implies the time-reversibility of the solution with initial distribution d µx = 1 Z 1I A g xe −Φx d x. „ 156

4.2 Linear molecule model

The set of allowed chains configurations is the intersection of 2n + 1 sets : A c = n −1 \ i=1 D i − \ n −1 \ i=1 D i+ \ D − \ D + \ D = where D i − = ¦ x ∈ R d n+2 , |x i − x i+1 | ≥ ˘x − © D i+ = ¦ x ∈ R d n+2 , |x i − x i+1 | ≤ ˘x + © D − = ¦ x ∈ R d n+2 , ˘ x − ≥ r − © D + = ¦ x ∈ R d n+2 , ˘ x + ≤ r + © D = = ¦ x ∈ R d n+2 , ˘ x − ≤ ˘x + © The boundaries of these sets are smooth, and simple derivation computations give the unique unit vector normal to each boundary at each point of ∂ A c we are not interested in other points. Actually, D − , D + and D = are half-spaces, which makes the computations and checking of UES and UNC properties very simple. • The vector n − = 0, . . . , 0, 1, 0 is normal to the boundary ∂ D − at each point x ∈ ∂ D − • Similarly, n + = 0, . . . , 0, 0, −1 is normal to the boundary ∂ D + at each point x ∈ ∂ D + • The vector normal to the boundary ∂ D = at each point x ∈ ∂ D = is n = = 0, . . . , 0, −1 p 2 , 1 p 2 • At every x ∈ A c ∩ ∂ D i − for 1 ≤ i ≤ n − 1, the vector normal to ∂ D i − is n = n i − x defined by : n i = x i − x i+1 ˘ x − p 3 n i+1 = x i+1 − x i ˘ x − p 3 ˘ n − = − 1 p 3 other components equal zero • At every x ∈ A c ∩ ∂ D i+ , the vector normal to ∂ D i+ is n = n i+ x defined by : n i = x i+1 − x i ˘ x + p 3 n i+1 = x i − x i+1 ˘ x + p 3 ˘ n + = 1 p 3 other components equal zero The proof of theorem 2.5 is similar to the proof of theorems 2.2 and 2.4, and will be omitted. It relies on the following proposition and uses theorem 3.3 and corollary 3.6 to obtain the existence, uniqueness, and reversibility of the solution of E c . As in the proof of theorem 2.2, the local times are multiplied by a suitable constant to provide a more convenient expression. So, in order to prove theorem 2.5, we only have to check that A c satisfies the assumptions of proposition 3.4, i.e. that the following proposition holds : Proposition 4.2. A c satisfies properties U ES ‚ r 2 − 2r + n p 2n Œ and U N C    s 1 − r 2 − 24r 2 + n 3 , r 5 − p 3 2 12 r 4 + n 6    . Moreover, for each x in ∂ A c , the set N A c x of normal vectors is equal to :    n ∈ S d n+2 , n = X ∂ D i − ∋x c i − n i − x + X ∂ D i+ ∋x c i+ n i+ x + 1I ∂ D − xc − n − + 1I ∂ D + xc + n + + 1I ∂ D = xc = n = with c i − , c i+ , c − , c + , c = ≥ 0    157 Proof of proposition 4.2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52