this implies that |n we use the Gram-Schmidt orthogonalization process for a sequence of vectors n n e e n l ≥ n

For k ∈ N large enough, since −n ∈ N ∗ 1 k , there exist unit vectors n i,k and non-negative numbers c i,k such that : n = X ∂ D i ∋x c i,k n i,k and for ∂ D i ∋ x n i

x.n

i,k ≥ r 1 − 1 k 2 When k tends to infinity, n i,k tends to n i

x, and for k large enough n

i,k . l x ≥ β 2 thus : 1 ≥ n.l x ≥ X ∂ D i ∋x c i,k n i,k . l x ≥ β 2 X ∂ D i ∋x c i,k Thus the sequences c i,k k are bounded, which implies the existence of convergent subsequences. Their limits c i, ∞ ≥ 0 satisfy : n = X ∂ D i ∋x c i, ∞ n i x This completes the proof of N D x ⊂ N ′ x . We already proved that N ′ x ⊂ N D

x, α

with α = β min ∂ D j ∋x α j , so we obtain N D x = N ′ x = N D

x, α

for each x ∈ ∂ D. As a consequence, D ∈ U ESβ min 1 ≤ j≤p α j . Let us now prove that D ∈ UN Cβ, δ. The Uniform Normal Cone property restricted to D holds for D i , with constant β i β 2 2 ≤ 1 2 . That is, for x ∈ D ∩ ∂ D i there exist a unit vector l i x which satisfies l i x . n i y ≥ p 1 − β 2 i for each y ∈ D ∩ ∂ D i such that |x − y| ≤ δ i . If l i x = n i x, this implies that |n i x − n i y| 2 ≤ 2β 2 i . If l i x 6= n i

x, we use the Gram-Schmidt orthogonalization process for a sequence of vectors

with l i x and n i x as first vectors, then compute n i

x.n

i y in the resulting orthonormal basis l i x , e 2 , e 3 , . . . , e m : n i

x.n

i y = l i x . n i yl i x . n i x + n i

y.e

2 Æ 1 − l i x . n i x 2 Note that |n i

y.e

2 | ≤ β i because l i x . n i y ≥ p 1 − β 2 i and |n i y| = 1, thus : n i

x.n

i y ≥ Æ 1 − β 2 i 2 − β 2 i = 1 − 2β 2 i This implies that |n i x − n i y| 2 ≤ 4β 2 i . So in both cases : |n i x − n i y| ≤ 2β i as soon as |x − y| ≤ δ i for x, y ∈ D ∩ ∂ D i . Let us now fix x ∈ ∂ D and δ = min 1 ≤i≤p δ i

2. We then choose x

′ ∈ ∂ D ∩ Bx, δ such that {i s.t. x ′ ∈ ∂ D i } ⊃ {i s.t. y ∈ ∂ D i } for each y ∈ ∂ D ∩ Bx, δ and we let l = l x ′ . To complete the proof of D ∈ UN Cβ, δ, we only have to prove that n.l is uniformly bounded from below for n ∈ N D y with y ∈ ∂ D ∩ Bx, δ. We already know that each n ∈ N D y is a convex sum of elements of the N D i y : n = P ∂ D i ∋y c i n i y. The coefficients c i are non-negative, their sum is not smaller than 1 because n is a unit vector, and is not larger than 1 β thanks to i v. So the vector n ′ = P ∂ D i ∋y c i n i x ′ satisfies : n ′ . l = X ∂ D i ∋x ′ c i n i x ′ .l ≥ β and |n ′ − n| ≤ X ∂ D i ∋y c i |n i x ′ − n i y| ≤ 2 X ∂ D i ∋y c i β i ≤ 2 max 1 ≤i≤p β i β Consequently :

n.l ≥ n

′ . l − |n ′ − n| ≥ β − 2 max 1 ≤i≤p β i β 0. „ 153 4 Existence of dynamics for globules and linear molecule models

4.1 Globules model

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52