α l l l getdoc879f. 216KB Jun 04 2011 12:04:37 AM

i The sets D i are closures of domains with non-zero volumes and boundaries at least C 2 in D : this implies the existence of a unique unit normal vector n i x at each point x ∈ D ∩ ∂ D i . ii Each set D i has the Uniform Exterior Sphere property restricted to D, i.e. ∃α i 0, ∀x ∈ D ∩ ∂ D i B x − α i n i

x, α

i ∩ D i = ; iii Each set D i has the Uniform Normal Cone property restricted to D, i.e. for some β i ∈ [0, 1[ and δ i 0 and for each x ∈ D ∩ ∂ D i there is a unit vector l i x s.t. ∀y ∈ D ∩ ∂ D i ∩ Bx, δ i n i

y.l

i x ≥ p 1 − β 2 i iv compatibility assumption There exists β p 2 max 1 ≤i≤p β i satisfying ∀x ∈ ∂ D, ∃l x ∈ S m , ∀i s.t. x ∈ ∂ D i l x . n i x ≥ β Under the above assumptions, D ∈ U ESα and D ∈ UN Cβ, δ hold with α = β min 1 ≤i≤p α i , δ = min 1 ≤i≤p δ i 2 and β = p 1 − β − 2 max 1 ≤i≤p β i β 2 . Moreover, the vectors normal to the boundary ∂ D are convex combinations of the vectors normal to the boundaries ∂ D i : ∀x ∈ ∂ D N D x =    n ∈ S m , n = X ∂ D i ∋x c i n i x with each c i ≥ 0    Remark 3.5 : Thanks to the compatibility assumption i v, n = P ∂ D i ∋x c i n i x with non-negatives c i ’s and |n| = 1 implies that X ∂ D i ∋x c i ≤ X ∂ D i ∋x c i n i

x.l

x β =

n.l

x β ≤ 1 β so that the last equality in proposition 3.4 can be rewritten as N D x =    n ∈ S m , n = X ∂ D i ∋x c i n i x with ∀i c i ≥ 0 and X ∂ D i ∋x c i ≤ 1 β    Corollary 3.6. of theorem 3.3 If D = p \ i=1 D i satisfies assumptions i · · · iv and if σ and b are bounded Lipschitz continuous func- tions, then Xt = X0 + Z t σ XsdWs + Z t bXsds + p X i=1 Z t n i Xsd L i s 2 has a unique strong solution with local times L i satisfying L i · = Z · 1I ∂ D i Xs d L i s 150 Proof of corollary 3.6 Thanks to proposition 3.4, D satisfies the assumptions of theorem 3.3. Thus equation 2 has a unique strong solution X with local time L and reflection direction n. Using proposition 3.4 again, there are non-unique coefficients c i ω, s ∈ [0, 1 β ] for each normal vector in the reflection term to be written as a convex combination : n ω, s = X ∂ D i ∋Xω,s c i ω, sn i Xω, s 3 Let us prove that there exists a measurable choice of the c i ’s : The map n resp. n i X is only defined for ω, s such that Xω, s ∈ ∂ D resp. Xω, s ∈ ∂ D i . We extend these maps by zero to obtain measurable maps on Ω × [0, T ] for an arbitary positive T . Note that equality 3 holds for the extended maps too. For each ω, s, we define the map f ω,s on R p by f ω,s c = | P p i=1 c i n i Xω, s − nω, s|. For a positive integer k, let R k = {0, 1 k , 2 k , . . . , 1 k ⌊ k β ⌋} p denote the 1 k -lattice on [0, 1 β ] p endowed with lexicographic order. The smaller point in R k for which f ω,s reaches its minimum value is c k ω, s = X c ∈R k c Y c ′ ∈R k ,c ′ 6=c 1I f ω,s c ′ f ω,s c + 1I f ω,s c ′ = f ω,s c1I c ′ c c k is a measurable map on Ω × [0, T ] and 3 implies that | f ω,s c k ω, s| ≤ p k . Taking coordi- nate after coordinate the limsup of the sequence of c k k , we obtain a measurable process c ∞ satisfying 3. Finally, let L i = Z · 1I ∂ D i Xsc i s dLs. L i has bounded variations on each [0, T ] since the c i ’s are bounded, and it is a local time in the sense of remark 2.1. Here, strong uniqueness holds for process X and for the reflection term p X i=1 Z t n i Xsd L i s. The uniqueness of this term does not imply uniqueness of the L i ’s, because the c i ’s are not unique. „ Proof of proposition 3.4 Let x ∈ ∂ D. Since D = T p i=1 D i , the set {i s.t. x ∈ ∂ D i } is not empty. Since D i satisfies U ES α i restricted to D, for each y ∈ D i y − x.n i x + 1 2 α i |y − x| 2 ≥ 0, and consequently : ∀i s.t. ∂ D i ∋ x ∀y ∈ D y − x.n i x + 1 2 min ∂ D j ∋x α j |y − x| 2 ≥ 0 Summing over i for non-negative c i ’s such that P ∂ D i ∋x c i ≤ 1 β we obtain : ∀y ∈ D X ∂ D j ∋x c i n i x.y − x +

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52