Globules model getdoc879f. 216KB Jun 04 2011 12:04:37 AM

section 3 are given in a general frame for easier adaptation to other examples. 2 Two hard core models

2.1 Globules model

We want to construct a model for interacting globules. Each globule is spherical with random radius oscillating between a minimum and a maximum value. Its center is a point in R d , d ≥ 2. The number n of globules is fixed. Globules configurations will be denoted by x = x 1 , ˘ x 1 , . . . , x n , ˘ x n with x 1 , . . . , x n ∈ R d and ˘ x 1 , . . . , ˘ x n ∈ R where x i is the center of the i th globule and ˘ x i is its radius. An allowed globules configuration is a configuration x satisfying ∀i r − ≤ ˘x i ≤ r + and ∀i 6= j |x i − x j | ≥ ˘x i + ˘ x j So, in an allowed configuration, spheres do not intersect and their radii are bounded from below by the minimum value r − 0 and bounded from above by the maximum value r + r − . In this paper, the symbol | · | denotes the Euclidean norm on R d or R d+1n or some other Euclidean space, depending on the context. Let A g be the set of allowed globules configurations : A g = ¦ x ∈ R d+1n , ∀i r − ≤ ˘x i ≤ r + and ∀i 6= j |x i − x j | ≥ ˘x i + ˘ x j © The random motion of reflecting spheres with fluctuating radii is represented by the following stochastic differential equation : E g        X i t = X i 0 + Z t σ i XsdW i s + Z t b i Xsds + n X j=1 Z t X i s − X j s ˘ X i s + ˘ X j s d L i j s ˘ X i t = ˘ X i 0 + Z t ˘ σ i Xsd ˘ W i s + Z t ˘b i Xsds − n X j=1 L i j t − L + i t + L − i t In this equation, Xs is the vector X i s, ˘ X i s 1 ≤i≤n . The initial configuration X0 is an A g -valued random vector. The W i ’s are independent R d -valued Brownian motions and the ˘ W i ’s are independent one-dimensional Brownian motions, also independent from the W i ’s. The diffusion coefficients σ i and ˘ σ i , and the drift coefficients b i and ˘b i are functions defined on A g , with values in the d × d matrices for σ i , values in R d for b i , and values in R for ˘ σ i and ˘b i . To make things simpler with the summation indices, we let L ii ≡ 0. A solution of equation E g is a continuous A g -valued process {Xt, t ≥ 0} satisfying equation E g for some family of local times L i j , L + i , L − i such that for each i, j : E ′ g      L i j ≡ L ji , L i j t = Z t 1I |X i s−X j s|= ˘ X i s+ ˘ X j s d L i j s , L + i t = Z t 1I ˘ X i s=r + d L + i s and L − i t = Z t 1I ˘ X i s=r − d L − i s 144 Remark 2.1 : Condition E ′ g means that the processes L i j , L + i and L − i only increase when X is on the boundary of the sets ¦ x, |x

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52