z ≥ ǫ|z|} we have : {x + z, z ∈ N z z ≥ ǫ|z|} v ≥ n and for k large enough n α α

which implies that P ∂ D j ∋x c i n i x belongs to the set N

x,

α of normal vectors on the boundary of D, for α = β min ∂ D j ∋x α j . Thanks to remark 3.5, this proves the inclusion N ′ x :=    n ∈ S m , n = X ∂ D i ∋x c i n i x with c i ≥ 0    ⊂ N

x, α

Let us prove the converse inclusion. For i such that ∂ D i ∋ x, the boundary ∂ D i is at least C 2 in

D, hence there exist a closed ball Bx, η

x i with η x i 0, and a C 2 function f x i : B x, η x i −→ R with non-vanishing derivative, such that B x, η x i ∩ D i = Bx, η x i ∩ {y ∈ R m , f x i y ≥ 0} there even exists an orthonormal coordinate system in which f x i y is the difference between the last coordinate of y and a C 2 function of the other coordinates, but we do not need this precise form here. The Taylor-Lagrange formula provides : ∀z s.t. |z| ≤ η x i f x i x + z = f x i x + ∇ f x i x.z + 1 2

z.D

2 f x i z ∗ z for some z ∗ ∈ Bx, η x i depending on z. By definition of f x i , x ∈ ∂ D i implies f x i x = 0 and ∇ f x i x = |∇ f x i

x|n

i

x. Moreover, the second derivative D

2 f x i is continuous hence bounded on the closed ball by some constant ||D 2 f x i || ∞ : ∀z s.t. |z| ≤ η x i f x i x + z ≥ |∇ f x i

x|n

i

x.z −

||D 2 f x i || ∞ 2 |z| 2 For any ǫ 0 and for δ i ǫ x = min ‚ η x i , 2 |∇ f x i x| ||D 2 f x i || ∞ ǫ Œ we obtain : |z| ≤ δ i ǫ x and z.n i x ≥ ǫ|z| =⇒ f x i x + z ≥ 0 =⇒ x + z ∈ D i Consequently, for N ǫ = \ ∂ D i ∋x {z, n i x.z ≥ ǫ|z|} we have : {x + z, z ∈ N ǫ and |z| ≤ min i δ i ǫ } ⊂ D By definition, for each n ∈ N D x , there exist α n 0 such that ∀y ∈ D y − x.n + 1 2 α n |y − x| 2 ≥ 0, hence for z ∈ N ǫ and λ 0 small enough : λz.n + λ 2 2 α n |z| 2 ≥ 0 For this to hold even with λ going to zero, z.n has to be non-negative. So we obtain : ∀n ∈ N D x ∀ǫ 0 − n ∈ N ∗ ǫ where N ∗ ǫ = {v, ∀z ∈ N ǫ

v.z

≤ 0} is the dual cone of the convex cone N ǫ . As proved in Fenchel [3] see also [9], the dual of a finite intersection of convex cones is the set of all limits of linear combinations of their dual cones, in particular : N ∗ ǫ = X ∂ D i ∋x {z, n i x.z ≥ ǫ|z|} ∗ = X ∂ D i ∋x {v, − n i

x.v ≥

p 1 − ǫ 2 |v|} 152 For k ∈ N large enough, since −n ∈ N ∗ 1 k , there exist unit vectors n i,k and non-negative numbers c i,k such that : n = X ∂ D i ∋x c i,k n i,k and for ∂ D i ∋ x n i

x.n

i,k ≥ r 1 − 1 k 2 When k tends to infinity, n i,k tends to n i

x, and for k large enough n

i,k . l x ≥ β 2 thus : 1 ≥ n.l x ≥ X ∂ D i ∋x c i,k n i,k . l x ≥ β 2 X ∂ D i ∋x c i,k Thus the sequences c i,k k are bounded, which implies the existence of convergent subsequences. Their limits c i, ∞ ≥ 0 satisfy : n = X ∂ D i ∋x c i, ∞ n i x This completes the proof of N D x ⊂ N ′ x . We already proved that N ′ x ⊂ N D

x, α

with α = β min ∂ D j ∋x α j , so we obtain N D x = N ′ x = N D

x, α

for each x ∈ ∂ D. As a consequence, D ∈ U ESβ min 1 ≤ j≤p α j . Let us now prove that D ∈ UN Cβ, δ. The Uniform Normal Cone property restricted to D holds for D i , with constant β i β 2 2 ≤ 1 2 . That is, for x ∈ D ∩ ∂ D i there exist a unit vector l i x which satisfies l i x . n i y ≥ p 1 − β 2 i for each y ∈ D ∩ ∂ D i such that |x − y| ≤ δ i . If l i x = n i x, this implies that |n

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52