Space-time first moment bound : proof of Lemma 3.5

5.3 Space-time first moment bound : proof of Lemma 3.5

Let Ψ : R 2 → R be bounded Lipschitz. Recall that P N is the semigroup of the rate-N random walk on S N with jump kernel p N , and introduce the function Φs, x := P N t −s Ψx exp−c 3.5 s, where c 3.5 := 1 ∨σ∨ ¯ K + € sup N ≥3 β N − β N 1 + Š C 15 , and ¯ K, C 15 were introduced in Section 2.1. Note that Ψx = expc 3.5 tΦt, x. It is straightforward that ||Φ|| ≤ 2c 3.5 ||Ψ|| Lip . Indeed, we first obviously have that ||Φ|| ∞ ≤ ||Ψ|| ∞ . Furthermore, on the one hand, |Φs, x + h − Φs, x| ≤ exp−c 3.5 sE ” Ψx + h + B t −s − Ψx + B t −s — ≤ exp−c 3.5 s |Ψ| Lip |h|, hence |Φ| Lip ≤ |Ψ| Lip . On the other hand, |Φs + h, x − Φs, x| ≤ exp−c 3.5 s + hE ” Ψx + B t −s−h − Ψx + B t −s — + exp −c 3.5 s + h − exp−c 3.5 s E ” Ψx + B t −s — ≤ |Ψ| Lip σ p h + c 3.5 |h|||Ψ|| ∞ , and it follows that |Φ| 1 2 ≤ σ|Ψ| Lip + c 3.5 ||Ψ|| ∞ ≤ c 3.5 ||Ψ|| Lip . Use Lemma 3.9 to obtain, for some η, δ 0 and T ≥ s ≥ t N , E[d N ,3 s Φ] ≤ log N 3 ˆ P {0 | e 1 | e 2 } t N E[X N s −t N Φs − t N , .] + C 3.9 ||Φ||log N −δ E[X N s −t N 1] + C 3.7 ||Φ|| ∞ t N log N E[ I N η s − t N ]. From 61 we can get a similar bound for the expected first drift integrand, E[d N ,2 s Φ]. Only the first term in the right-hand side above should be replaced with sup N ∈N β N − β N 1 + × log NˆP{0 | e 1 ∼ e 2 } t N E[X N s −t N Φs − t N , .]. From our definition of c 3.5 , these two bounds and Proposition 3.4 a, we deduce that for large enough N , E[d N ,3 s Φ + d N ,2 s Φ] ≤ c 3.5 E[X N s −t N Φs − t N , .] + 2C 3.9 C ′ a c 3.5 ||Ψ|| Lip log N −δ E[X N 1] + C 3.7 + C 61 ||Φ|| ∞ t N log N E[ I N η s − t N ]. We now integrate and use Corollary 3.11 to conclude that there is a constant C 98 , depending on T and ||Ψ|| Lip , such that for t N ≤ t ≤ T , E   Z t t N d N ,3 s Φ + d N ,2 s Φds   ≤ c 3.5 Z t E[X N s Φs, .]ds + C 98 log N −δ 2 X N 1 + X N 1 2 , 98 1232 where δ 2 := η2 ∧ δ. On the other hand, when t ≤ t N , we use 41, 54, and Proposition 3.4 a to get E –Z t d N ,3 s Φ + d N ,2 s Φds ™ ≤ C||Φ|| ∞ log N 3 Z t E[X N s 1]ds ≤ C ′ ||Ψ|| ∞ log N 3 t N X N 1. Combining the above and 98, we obtain E –Z t € d N ,3 s Φ + d N ,2 s Φ Š ds ™ ≤ c 3.5 Z t E[X N s Φs, .]ds + C 98 log N −δ 2 X N 1+X N 1 2 +C ′ ||Ψ|| ∞ log N −16 X N 1. 99 We have chosen Φ so it satisfies A N Φs, .+ ˙ Φs, . = −c 3.5 Φs, .. Therefore using the above inequality and 28 we obtain that for any t ≤ T , E[X N t Φt, .] ≤ X N Φ0, . + C 98 + C ′ ||Ψ|| ∞ log N −δ 2 X N 1 + X N 1 2 , which yields C3.5 may depend on T E[X N t Ψ] ≤ expc 3.5 tX N P N t Ψ + C 3.5 log N −δ 2 X N 1 + X N 1 2 , and completes the proof of Lemma 3.5. ƒ 6 Proof of the tightness of the sequence In this paragraph we establish Lemmas 3.2 and 3.3. We already explained how Proposition 3.1 follows from these two results. By 28, Lemma 3.2 is a simple consequence of the following. Lemma 6.1. For any bounded Lipschitz Φ : R 2 → R, a the sequences D N ,2 Φ N ∈N , D N ,3 Φ N ∈N are C-tight, b if in addition Φ is in C 3 b R 2 , the sequence D N ,1 Φ N is C-tight, c the sequence M N Φ N ∈N is C-tight. Proof a Plugging in Proposition 3.4 b into equation 69, we deduce that for T ≥ t 2 t 1 ≥ t N , i = 2, 3, E h€ D N ,i t 2 Φ − D N ,i t 1 Φ Š 2 i ≤ C 69 C b ||Φ|| 2 Lip X N 1 2 + X N 1 t 2 − t 1 2 + log N 6 t N ∧ t 2 − t 1 t 2 − t 1 . 1233 Recall t N = log N −19 so that, log N 6 t N ∧ t 2 − t 1 ≤ log N 6 p t N p t 2 − t 1 ≤ p t 2 − t 1 . It follows that for t N ≤ t 1 ≤ t 2 ≤ T , i = 2, 3, E h€ D N ,i t 2 Φ − D N ,i t 1 Φ Š 2 i ≤ C 100 ||Φ|| 2 Lip X N 1 2 + X N 1t 2 − t 1 3 2 . 100 Moreover, E –Z t N |d N ,i s Φ|ds ™ ≤ β ∨ 1log N 3 ||Φ|| ∞ E –Z t N X N s 1ds ™ ≤ C 101 t N log N 3 ||Φ|| ∞ X N 1 −→ N →∞ 0, 101 where we used Proposition 3.4 a in the last line. Lemma 6.1 a thus follows from 100, 101 and Kolmogorov’s criterion see Theorem 12.4 in [1]. Here note that for a sequence of R-valued processes {Y N }, if {Y N ·∨t N } is C-tight and sup t ≤t N |Y N t | → 0 in probability, then {Y N } is C-tight. b By Lemma 2.6 of [3] we have sup N ||A N Φ|| ∞ ≤ C 102 Φ. Therefore, using Cauchy-Schwarz, we obtain that for 0 ≤ t 1 t 2 ≤ T , E    Z t 2 t 1 X N s A N Φds 2    ≤ C 102 Φt 2 − t 1 E   Z t 2 t 1 X N s 1 2 ds   , 102 and the conclusion follows from Proposition 3.4 and Kolmogorov’s criterion see Theorem 12.4 in [1]. c We now turn to the martingale term. As in the proof of Proposition 3.7 of [5], it is enough to show that for any bounded Lipschitz Φ, {〈M N Φ〉} N is C-tight. Let t N ≤ t 1 ≤ t 2 ≤ T . Using Lemma 5.1 along with 30 and 63, we obtain E[ € 〈M N Φ〉 t 2 − 〈M N Φ〉 t 1 Š 2 ] ≤ 3E    Z t 2 t 1 m N 1,s Φds 2    + 3E    Z t 2 t 1 m N 2,s Φds 2    +12E    Z t 2 t 1 X N s log N Φ 2 f N ξ N s ds 2    ≤ C 103 ||Φ|| 4 Lip log N 2 N X N 1 + X N 1 2 t 2 − t 1 2 +12||Φ|| 4 ∞ E    Z t 2 t 1 X N s log N f N ξ N s ds 2    . 103 1234 To bound the last term in the right-hand side above, we proceed in a very similar fashion as when dealing with the drift terms. More precisely, writing Y s := X N s log N f N ξ N s , we obtain E    Z t 2 t 1 X N s log N f N ξ N s ds 2    := E    Z t 2 t 1 Y sds 2    ≤ E   4 Z t 2 t 1 Z s 1 +t N ∧t 2 s 1 ds 2 ds 1 2 Y i=1 € Y s i − E[Y s i | F s i −t N ] Š   +2E    Z t 2 t 1 E[Y s | F s −t N ]ds 2    . 104 We may proceed as in the proof of 100. First, use the fact that Y s ≤ log NX N s 1 and Proposi- tion 3.4 to get E   4 Z t 2 t 1 Z s 1 +t N ∧t 2 s 1 ds 2 ds 1 2 Y i=1 € Y s i − E[Y s i | F s i −t N ] Š   ≤ C 105 X N 1 + X N 1 2 t 2 − t 1 3 2 . 105 Then, use Cauchy-Schwarz, Lemma 5.2 and Proposition 3.4 to see that 2E    Z t 2 t 1 E[Y s | F s −t N ]ds 2    ≤ C 106 X N 1 + X N 1 2 t 1 − t 2 2 . 106 Finally, it is straightforward that 〈M N Φ〉 t N → 0 in probability as N → ∞. Therefore by the Kol- mogorov criterion, {〈M N Φ〉} N is C-tight, and the proof of Lemma 6.1 is complete. ƒ In order to finish the proof of Proposition 3.1, it remains to establish the compact containment condition Lemma 3.3. Let T 0 and ¦ h n : R 2 → R, n ≥ 0 © be bounded Lipschitz functions such that 1 {|x|n+1} ≤ h n x ≤ 1 {|x|n} , sup n ∈N ||h n || Lip ≤ C 107 . 107 Our goal is to show that lim n →∞ sup N ∈N Psup t ≤T X N T h n ≥ ǫ = 0 for all ǫ 0. 108 By 28, sup t ≤T X N t h n ≤ sup t ≤T M N t h n + sup t ≤T Y N t h n , 109 where Y N t h n := X N h n + Z t X N s A N h n ds + D N ,2 t h n + D N ,3 t h n =: X N h n + Z t y N s h n ds. 1235 We let {ε N } and {η n } denote sequences converging to 0, which may depend on T and may change from line to line. Let us first handle the martingale part. By Lemma 5.1 and Proposition 3.4 a, we deduce that E 〈M N h n 〉 T ≤ E   Z T X N s € 2log N h 2 n f N ξ N s Š ds   + ε N . We also may bound the first term in the above by 2 E –Z t N X N s € h 2 n log N f N ξ N s Š ds ™ + E   Z T t N E h X N s € h 2 n log N f N ξ N s Š | F N s −t N i ds   ≤ 2 n C a log N −18 X N 1 + C 5.2 ||h 2 n || Lip log N 8 Z T t N E[X N s −t N 1]ds + C 5.2 Z T t N E[X N s −t N h 2 n ]ds o , where we used Lemma 5.2 and the Markov property to bound the second term of the first line above. Now use Proposition 3.4 a, Lemma 3.5, and the convergence of {X N } to deduce there exists C 110 , depending on T , such that E 〈M N h n 〉 T ≤ ε N + C 110 Z T X N P N s h 2 n ds. 110 The tightness of {X N } shows that lim n →∞ sup N sup t ≤T X N P N t h 2 n = 0. 111 It follows from 110, 111, and Doob’s strong L 2 inequality that lim n →∞ sup N Esup t ≤T M N t h n 2 = 0. 112 Consider now the other terms of the sum in 109. Claim 6.2. Let T 0, and Φ be bounded Lipschitz on R 2 such that ||Φ|| Lip ≤ C 107 . There exists N ω, N ∈ N and a positive constant C 6.2 ≥ 1 depending only on T, C 107 and sup N X N 1 such that • ∀t 1 , t 2 ∈ [t N , T ], |t 1 − t 2 | ≤ 2 −N ω,N ⇒ Y N t 1 Φ − Y N t 2 Φ ≤ |t 1 − t 2 | 1 8 • sup N E[2 N ω,N 8 ] ≤ C 6.2 . Proof of Claim. By equations 100 and 102, there is a constant C 113 depending only on T, C 107 and sup N X N 1 such that for any N , for any t N ≤ t 1 ≤ t 2 ≤ T , E[ Y N t 1 Φ − Y N t 2 Φ 2 ] ≤ C 113 |t 2 − t 1 | 3 2 . 113 The result follows from the usual dyadic expansion proof of Kolmogorov’s criterion. ƒ 1236 We now return to the compact containment proof. We have E 1 {N M } sup t ≤T |Y N t h n | ≤ X N h n + E – sup t ≤t N |Y N t h n − X N h n | ™ + E ‚ max t N ≤ j2 −M ≤T |Y N j2 −M h n | Œ +E 1 {N M } max t N ≤ j2 −M ≤T sup s ∈[ j2 −M , j+12 −M ] |Y N s h n − Y N j2 −M h n | ≤ X N h n + E –Z t N | y N s h n |ds ™ + 2 M T max j2 −M ≤T E[ |Y N j2 −M h n |] + 2 −M8 , where, to obtain the last inequality, we used Claim 6.2 to bound the last term. Using 101, and the corresponding easier bound on D N ,1 t h n we see that the second term in the above sum will be bounded, uniformly in n, by ε N . The tightness of {X N } bounds the first term, uniformly in N, by η n . Next use |Y N t h n | ≤ |M N t h n | + X N t h n , 112, and Lemma 3.5 to see that max j2 −M ≤T E[ |Y N j2 −M h n |] ≤ η n + ε N + e c 3.5 T sup t ≤T X N P N t h n . An application of 111 shows that the last term above may also be bounded uniformly in N by η n and so combining the above bounds gives us E 1 {N M } sup t ≤T |Y N t h n | ≤ η n + ε N 1 + 2 M + 2 −M8 , 114 and from Claim 6.2 and Markov’s inequality we have PN ≥ M ≤ C 6.2 2 −M8 . The above two bounds easily imply lim n →∞ sup N Psup t ≤T |Y N t h n | ǫ = 0 for all ǫ 0. 115 To see this fix ǫ, δ 0 and then choose M so that PN ≥ M δ2 by the above bound. For n large enough and N ≥ N 1 the upper bound in 114 is at most ǫδ2. It then follows that for n large enough, sup N ≥N 1 Psup t ≤T |Y N t h n | ǫ δ and 115 follows since the limit in 115 is trivially 0 for each fixed N . Finally, use 115 and 112 in 109 to complete the derivation of 108 and hence Lemma 3.3. ƒ 7 Identifying the limit In the previous section we established that the sequence X N N ∈N is C-tight in the space DR + , M F R 2 . It remains to identify possible limit points. 1237 Using the Skorokhod representation we may suppose without loss of generality that on an appropri- ate probability space and for an increasing sequence of integers N k we have X N k a.s. −→ k →∞ X ∈ CR + , M F R 2 . Furthermore, if we write ˆ q 3 N := log N 3 ˆ P {0|e 1 |e 2 } t N we have cf 6 that lim N →∞ ˆ q 3 N = K. Dropping the dependence in k in the notation, we have for 0 ≤ t ≤ T and Φ ∈ C 3 b R 2 , E   D N ,3 t Φ − K Z t X N s Φds   ≤ E   Z t N ∧t d N ,3 s Φds   + E    Z t N ∨t t N d N ,3 s Φ − E[d N ,3 s Φ | F s −t N ]ds 2    1 2 +E   Z t N ∨t t N E [d N ,3 s Φ | F s −t N ] − ˆq 3 N X N s −t N Φ d s   + ˆ q 3 N − K ||Φ|| ∞ E   Z t−t N + X N s 1ds   + K||Φ|| ∞ E   Z t t−t N + X N s 1ds   , where we used Cauchy-Schwarz to get the second term in the sum above. Use 101 to bound the first term in the sum above, 67 and Proposition 3.4 b to bound the second, Lemma 3.9, Proposition 3.4 a and Corollary 3.11 to handle the third, and finally Proposition 3.4 a to deal with the two last. We obtain for some constants C 116 , C ′ 116 depending on T , that for any t ≤ T , E   D N ,3 t Φ − K Z t X N s Φds   ≤ C 116 ||Φ|| t N log N 3 X N 1 + p t N log N 3 X N 1 + X N 1 2 1 2 + log N −δ 2 X N 1 +C 3.11 log N −η2 X N 1 + X N 1 2 + ˆ q 3 N − K X N 1 + K t N X N 1 ≤ C ′ 116 ||Φ||X N 1 + X N 1 2 + 1 € log N −η2 + ˆ q 3 N − K Š . 116 The above clearly goes to 0 as N = N k goes to infinity. The drift term D N ,2 Φ is handled in a similar manner; use 61 in place of Lemma 3.9. We find that E   D N ,2 t Φ − γβ − β 1 Z t X N s Φds   −→ k →∞ 0. For the term R t X N s A N Φds we have by Lemma 2.6 of [3] : sup s ≤T A N Φ − σ 2 ∆Φ 2 ∞ −→ N →∞ 0, 1238 and therefore E   Z t X N s A N Φds − Z t X s σ 2 ∆Φ 2 ds   −→ k →∞ 0. It finally remains to deal with the predictable square function of the martingale term. By Lemma 5.1 there is an ε N = ε N t → 0 as N → ∞ so that E |〈M N Φ〉 t − Z t 4 πσ 2 X N s Φ 2 ds| ≤ E 2 Z t X N s log N Φ 2 f N ξ N s − 4πσ 2 X N s Φ 2 ds + ε N . The proof that the first term goes to zero as N → ∞ proceeds as in the argument above for D N ,2 Φ. In the analogue of 61 one gets log N P {0|e 1 } t N → 2πσ 2 see 13 in place of log N P {0|e 1 ∼ e 2 } → γ. It is now routine to take limits in 28 for Φ as above to obtain the martingale problem MP characterizing super-Brownian motion. The details are just as in the proof of Proposition 3.2 of [5]. We have completed the proof of Theorem 1.5. ƒ 8 Proof of Theorems 1.4, 1.2.

8.1 Outline of the proof of survival, Theorem 1.4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52