A key second moment estimate

We prove Lemma 3.7 in Section 4. Remark 3.8. If we set s = t N in 42 and u = 0 in the above Lemma and combine 42,43, 44, and 46 we see there is a δ 3.8 0 and C 3.8 so that for any ξ N ∈ S N log N 4 N P x Φv, x ˆ H ξ N , x, t N − ξ N xP{0|e 1 |e 2 } t N ≤ C 3.8 kΦk Lip h 1 t N log N I N η 3.7 0 + log N −δ 3.8 X N 1 i . 47 We now deduce two immediate consequences of the above. Firstly, for any s ≥ t N , combining Lemma 3.6, 42, the first three estimates of the above Lemma with u = s − t N , and 6, we obtain E ” d N ,3 s Φ, ξ N | F s −t N — ≤ C 48 ||Φ||X N s −t N 1. 48 This, along with 41, allows us to bound the total mass of this new drift term and conclude that E ” D N ,3 t 1 — ≤ C 48 E   Z t−t N + X N s 1ds   + 2log N 3 E –Z t ∧t N X N s 1ds ™ . 49 Secondly, estimates 43, 44, 46 used with u = s −t N allow us to refine the estimate of Lemma 3.6 on the conditional expectation of d N ,3 s Φ. That is we have : Lemma 3.9. There is a positive constant C 3.9 such that for any s ≥ t N , E ” d N ,3 s Φ | F s −t N — − log N 3 ˆ P {0 | e 1 | e 2 } t N X N s −t N Φs − t N , . ≤ C 3.9 ||Φ||log N −δ 3.7 X N s −t N 1 + C 3.7 ||Φ|| ∞ t N log N I N η 3.7 s − t N .

3.3 A key second moment estimate

In order to exploit this last result we need to bound the second term arising in the upper bound of Lemma 3.9. Proposition 3.10. Let δ N N ≥3 be a positive sequence such that lim N →∞ δ N = 0 and lim inf N →∞ p N δ N 0. For any T , there exists C 3.10 depending on T and {δ N } such that for any t ≤ T , for any N ≥ 3, E –Z Z 1 {|x− y|≤ p δ N } d X N t xd X N t y ™ ≤ C 3.10 € X N 1 + X N 1 2 Š δ N 1 + log 1 + t δ N + δ N t + δ N . The proof of Proposition 3.10 is somewhat long and technical. We will address it in Sec- tion 5. Those familiar with the Hausdorff measure results for planar super-Brownian mo- tion see e.g., [10] should be able to predict the key δ N log1 δ N term in the above 1210 bound from the limit theorem we are trying to prove. Although that reference gives φr = r 2 log1 r log log log1r as the exact Hausdorff measure function for the limiting super- Brownian motion, the proofs show that the typical mass in a ball of radius r centered at a point chosen at random according to super-Brownian motion is r 2 log1 r. The triple log term arises from the limsup behaviour as r ↓ 0. Now set r = p δ N to arrive at the above term. A similar result to the above is proved in [7] Proposition 7.2 but in that setting one has N |α N i −1| = Olog N and this allows us to bound X N by a rescaled biased voter model. It then suffices to obtain the above for the biased voter model and this calculation is much easier due to its elementary dual process. We have N |α N i − 1| = Olog N 3 , making some of the drift terms much harder to bound, and also forcing us to use the more complicated dual ˜ B. Corollary 3.11. If T 0 and η ∈ 0, 1, there exists a constant C 3.11 depending on T and η such that for any t ≤ T , 1 t N log N E   Z t ∨t N t N I N η s − t N ds   ≤ C 3.11 log N −η2 X N 1 + X N 1 2 . Proof : Without loss of generality consider T ≥ 1. Use Proposition 3.10 with δ N = t N log N 1 −η to obtain 1 t N log N E   Z t ∨t N t N I N η s − t N ds   ≤ C 3.10 log N −η X N 1+X N 1 2 Z T 1 + log 1 + s t N log N 1 −η + 1 s + t N log N 1 −η ds = C 3.10 log N −η X N 1+X N 1 2 T + 1 + log N −18−η log[1 + T log N 18+ η ], and the result follows. ƒ 4 Estimates on the drift terms, first moment bounds We start this section by establishing the first moment estimates on the new drift term in Lem- mas 3.6, 3.7, and 3.9. The corresponding estimates for the second drift term D N ,2 are easier, and follow from a subset of the arguments used for D N ,3 . We will state the estimates and outline their proofs in paragraph 4.3. Finally, we will apply these results to proving the bound on the mean total mass Proposition 3.4 a.

4.1 Proof of Lemma 3.6

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52