On the new drift term

Suppose Φ : R + × R 2 → R. Define |Φ| Lip , respectively |Φ| 1 2 , to be the smallest element in R + such that |Φs, x − Φs, y| ≤ |Φ| Lip |x − y|, ∀s ≥ 0, x ∈ R 2 , y ∈ R 2 , |Φs − t N , x − Φs, x| ≤ |Φ| 1 2 p t N , ∀ s ≥ t N , x ∈ R 2 , We will write ||Φ|| Lip := ||Φ|| ∞ + |Φ| Lip , ||Φ|| 1 2 := ||Φ|| ∞ + |Φ| 1 2 and ||Φ|| := ||Φ|| ∞ + |Φ| Lip + |Φ| 1 2 . Obviously the definition of ||.|| Lip also applies to functions from R 2 into R. Define P N t , t ≥ 0 as the semigroup of the rate−N random walk on S N with jump kernel p N . Lemma 3.5. There exist δ 3.5 0, c 3.5 0 and for any T 0, there is a C 3.5 T , so that for all t ≤ T and any Ψ : R 2 → R + such that ||Ψ|| Lip ≤ T , E ” X N t Ψ — ≤ e c 3.5 t X N € P N t Ψ Š + C 3.5 log N −δ 3.5 X N 1 + X N 1 2 . This lemma requires a key second moment estimate see Proposition 3.10 below, it is proved in Subsection 5.3.

3.2 On the new drift term

If Φ : R + × R 2 → R, let d N ,3 s Φ, ξ N := log N 4 N X x ∈S N Φs, x ” ξ N s x f x, ξ N s 2 − 1 − ξ N s x f 1 x, ξ N s 2 — , so that 29 implies D N ,3 t Φ = R t d N ,3 s Φ, ξ N ds. When the context is obvious we will drop ξ N from the notation. For s t N it will be enough to use the obvious bound |d N ,3 s Φ| ≤ 2log N 3 ||Φ|| ∞ X N s 1. 41 On the other hand we are able, for s ≥ t N , to get good bounds on the projection of d N ,3 s Φ onto F s −t N . Indeed on [s − t N , s], it is very unlikely to see a branching i.e. red or green arrows for the rate v N random walks making up the dual process coming down from a given x at time s, and therefore, the dynamics of the rescaled Lotka-Volterra model on that scale should be very close to those of the voter model. Let ˆ H N ξ N s −t N , x, t N := ˆ E ξ N s −t N ˆ B x t N 2 Y i=1 1 − ξ N s −t N ˆ B x+e i t N −1 − ξ N s −t N ˆ B x t N 2 Y i=1 ξ N s −t N ˆ B x+e i t N . Lemma 3.6. There exists a constant C 3.6 such that for any s ≥ t N , and any Φ : R + × R 2 → R, E ” d N ,3 s Φ, ξ N | F s −t N — − log N 4 N X x ∈S N Φs − t N , x ˆ H N ξ N s −t N , x, t N ≤ C 3.6 ||Φ|| 1 2 X N s −t N 1log N −6 . 1208 We prove Lemma 3.6 in Section 4. Let us now look a bit more closely at the term arising in Lemma 3.6. Note that in terms of the voter dual, ˆ H ξ N s −t N , x, t N disappears whenever the rate v N walk started at x, coalesces before time t N with either one or both of the rate v N walks started respectively at x + e i , i = 1, 2. The non zero contributions will come from two terms. The first corresponds to the event, which we will denote {x | x + e 1 | x + e 2 } t N , that there is no collision between the three rate v N walks started at x, x + e 1 , x + e 2 up to time t N . The second corresponds to the event, which we will denote {x | x + e 1 ∼ x + e 2 } t N , that the rate v N walks started at x + e 1 , x + e 2 coalesce before t N , but that both do not collide with the walk started at x up to time t N . For convenience, and when the context is clear, we will drop the subscript from these two notations. We can now write recall e = 0, ˆ H N ξ N s −t N , x, t N = ˆ E h ξ N s −t N ˆ B x t N 1 − ξ N s −t N ˆ B x+e 1 t N − 1 − ξ N s −t N ˆ B x t N ξ N s −t N ˆ B x+e 1 t N 1 {x|x+e 1 ∼x+e 2 } tN i + ˆ E ξ N s −t N ˆ B x t N + 2 2 Y i=0 ξ N s −t N ˆ B x+e i t N − X ≤i j≤2 ξ N s −t N ˆ B x+e i t N ξ N s −t N ˆ B x+e j t N 1 {x|x+e 1 |x+e 2 } tN = ˆ E h ξ N s −t N ˆ B x t N − ξ N s −t N ˆ B x+e 1 t N 1 {x|x+e 1 ∼x+e 2 } tN i + ˆ E h ξ N s −t N ˆ B x t N 1 {x|x+e 1 |x+e 2 } tN i + ˆ E    2 2 Y i=0 ξ N s −t N ˆ B x+e i t N − X ≤i j≤2 ξ N s −t N ˆ B x+e i t N ξ N s −t N ˆ B x+e j t N 1 {x|x+e 1 |x+e 2 } tN    =: F N 1 s − t N , x, t N + F N 2 s − t N , x, t N + F N 3 s − t N , x, t N 42 Lemma 3.7. There is a constant C 3.7 such that the following hold for any u, v ≥ 0. log N 4 N X x ∈S N Φv, xF N 1 u, x, t N ≤ C 3.7 |Φ| Lip log N −6 X N u 1, 43 log N 4 N X x ∈S N Φv, xF N 2 u, x, t N − log N 3 ˆ P {0 | e 1 | e 2 } t N X N u Φv, . ≤ C 3.7 |Φ| Lip log N −6 X N u 1, 44 log N 4 N X x ∈S N Φv, xF N 3 u, x, t N ≤ C 3.7 ||Φ|| ∞ X N u 1. 45 There exist δ 3.7 , η 3.7 ∈ 0, 1 such that log N 4 N X x ∈S N Φv, xF N 3 u, x, t N ≤ C 3.7 ||Φ|| ∞ 1 t N log N I N η 3.7 u + X N u 1log N −δ 3.7 , 46 where I N η u := RR 1 {0|x− y| p t N log N 1 −η } d X N u xd X N u y. 1209 We prove Lemma 3.7 in Section 4. Remark 3.8. If we set s = t N in 42 and u = 0 in the above Lemma and combine 42,43, 44, and 46 we see there is a δ 3.8 0 and C 3.8 so that for any ξ N ∈ S N log N 4 N P x Φv, x ˆ H ξ N , x, t N − ξ N xP{0|e 1 |e 2 } t N ≤ C 3.8 kΦk Lip h 1 t N log N I N η 3.7 0 + log N −δ 3.8 X N 1 i . 47 We now deduce two immediate consequences of the above. Firstly, for any s ≥ t N , combining Lemma 3.6, 42, the first three estimates of the above Lemma with u = s − t N , and 6, we obtain E ” d N ,3 s Φ, ξ N | F s −t N — ≤ C 48 ||Φ||X N s −t N 1. 48 This, along with 41, allows us to bound the total mass of this new drift term and conclude that E ” D N ,3 t 1 — ≤ C 48 E   Z t−t N + X N s 1ds   + 2log N 3 E –Z t ∧t N X N s 1ds ™ . 49 Secondly, estimates 43, 44, 46 used with u = s −t N allow us to refine the estimate of Lemma 3.6 on the conditional expectation of d N ,3 s Φ. That is we have : Lemma 3.9. There is a positive constant C 3.9 such that for any s ≥ t N , E ” d N ,3 s Φ | F s −t N — − log N 3 ˆ P {0 | e 1 | e 2 } t N X N s −t N Φs − t N , . ≤ C 3.9 ||Φ||log N −δ 3.7 X N s −t N 1 + C 3.7 ||Φ|| ∞ t N log N I N η 3.7 s − t N .

3.3 A key second moment estimate

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52