Martingale problem getdoc7e8b. 765KB Jun 04 2011 12:04:34 AM

above construction of the dual we reset locations µR 1 + e i to ∆ if they are outside I ′ . If ξ N s ∆ = 0, the reconstruction of ξ N t x i from the dual variables is again valid as is the reasoning which led to 25. More specifically if z 1 = 1, z 2 , z 3 ∈ {0, 1}, x i ∈ I ′ , for i = 1, 2, 3 and we define E x i i ≤3 t := ¦ ∃i ≤ 3 there is at least one coloured arrow encountered by ˆB x i on [0, t] © , then E   3 Y i=1 1 {ξ N t x i =z i }   − E   3 Y i=1 1 {ξ N ˆ B xi t =z i }   ≤ E    1 E x1,x2,x3 t X y ∈˜B x1 t ξ N y    . 27

2.3 Martingale problem

By Proposition 3.1 of [7], we have, for any Φ ∈ C b [0, T ] ×S N such that … Φ := ∂ Φ ∂ t ∈ C b [0, T ] ×S N , X N t Φt, .= X Φ0, .+ M N t Φ+ D N ,1 t Φ+ D N ,2 t Φ+ D N ,3 t Φ, 28 where the reader should be warned that the terms D N ,2 and D N ,3 below do not agree with the corresponding terms in [7] although their sums do agree D N ,1 t Φ = Z t X N s A N Φs, .+ … Φs, .ds, A N Φs, x := X y ∈S N N p N y − x Φs, y − Φs, x , D N ,2 t Φ := Z t log N 2 N X x ∈S N Φs, x ” β N 1 − ξ N s x f N 1 x, ξ N s 2 − β N 1 ξ N s x f N x, ξ N s 2 — ds, D N ,3 t Φ := Z t log N 4 N X x ∈S N Φs, x ” ξ N s x f N x, ξ N s 2 − 1 − ξ N s x f N 1 x, ξ N s 2 — ds, 29 and M N t Φ is an F X N t , L 2 -martingale such that 〈M N Φ〉 t = 〈M N Φ〉 1,t + 〈M N Φ〉 2,t , 30 with 〈M N Φ〉 1,t := log N 2 N Z t X x ∈S N Φs, x 2 X y ∈S N p N y − xξ N s y − ξ N s x 2 ds, 31 1204 and 〈M N Φ〉 2,t := log N 2 N Z t X x ∈S N Φs, x 2 α N − 11 − ξ N s x f N 1 x, ξ N s 2 + α N 1 − 1ξ N s x f N x, ξ N s 2 ds. 32 Proposition 3.1 of [7] erroneously had a prefactor of log N 2 N 2 on the final term. The error is insignifi- cant as the α N i − 1 terms in the above are still small enough to make this term approach 0 in L 1 as N → ∞ both here and in [7]. Comparing 28 with the martingale problem MP for the super-Brownian motion limit, we see that to prove Theorem 1.5 we will need to establish the tightness of the laws of {X N } on DR + , M F R 2 , with all limit points continuous, and if X N k → X weakly, then as N = N k → ∞, E h D N ,1 t Φ − Z t X N s σ 2 2 ∆Φ s + ˙ Φ s ds i → 0, 33 E h D N ,2 t Φ − γβ − β 1 Z t X N s Φds i → 0, 34 E h D N ,3 t Φ − K Z t X N s Φds i → 0, 35 E h 〈M N Φ〉 1,t − 4πσ 2 Z t X N s Φ 2 ds i → 0, 36 E h 〈M N Φ〉 2,t i → 0. 37 Controlling the five terms in 28 in this manner will also be the main ingredients in establishing the above tightness. As already noted it is the presence of the higher powers of log N in D N ,3 which will make 35 particularly tricky. We now give a brief outline of the proof of this particular result which is established in Section 7 although many of the key ingredients are given in earlier Sections and relies on the moment estimates in Sections 4 and 5. The remaining convergences also treated in Section 7 are closer to the arguments in [7] although their proofs are also complicated by the greater values of |α N i − 1|. In fact some of the new ingredients introduced here would have significantly simplified some of those proofs. Although we will be able to drop the time dependence in Φ for the convergence proof itself, it will be important for our moment bounds to keep this dependence. If D N ,3 t Φ = R t d N ,3 s Φds, then a simple L 2 argument see 67 in Section 5 will allow us to approximate D N ,3 t Φ with R t t N Ed N ,3 s Φ|F s −t N ds recall that t N = log N −19 . So we need to 1205 estimate Ed N ,3 s Φ|F s −t N ds = log N 4 N X x ∈S N Φs, xEξ N s x f N x, ξ N s 2 − 1 − ξ N s x f N 1 x, ξ N s 2 |F s −t N = log N 4 N X x ∈S N Φs, xEξ N s x 2 Y 1 1 − ξ N s x + e i − 1 − ξ N s x 2 Y 1 ξ N s x + e i |F s −t N , where e 1 , e 2 are chosen independently according to p N ·. To proceed carefully we will need to use the dual ˜ B of ξ N but note that on the short interval [s − t N , s] we do not expect to find any red or green arrows since log N 3 t N ≪ 1, and so we can use the voter dual ˆB and the Markov property to calculate the above conditional expectation see Lemma 3.6. This leads to the estimate here ˆ E only integrates out the dual and e 1 , e 2 Ed N ,3 s Φ|F s −t N ≈ log N 4 N X x ∈S N Φs, x ˆ E ξ N s −t N ˆ B x t N 2 Y 1 1 − ξ N s −t N ˆ B x+e i t N 38 − 1 − ξ N s −t N ˆ B x t N 2 Y 1 ξ N s −t N ˆ B x+e i t N . There is no contribution to the above expectation if ˆ B x coalesces with ˆ B x+e 1 or ˆ B x+e 2 on [0, t N ]. On the event where ˆ B x+e 1 t N = ˆ B x+e 2 t N , the integrand becomes ξ N s −t N ˆ B x t N 1 − ξ N s −t N ˆ B x+e 1 t N − 1 − ξ N s −t N ˆ B x t N ξ N s −t N ˆ B x+e 1 t N 39 = ξ N s −t N ˆ B x t N − ξ N s −t N ˆ B x+e 1 t N , thanks to an elementary and crucial cancellation. Summing by parts and using the regularity of Φs, ·, one easily sees that the contribution to Ed N ,3 s Φ|F s −t N from this term is negligible in the limit. Consider next the contribution from the remaining event {x | x + e 1 | x + e 2 } on which there is no coalescing of {B x , ˆ B x+e 1 , ˆ B x+e 2 } on [0, t N ]. Recall that the density of 1’s in ξ N s −t N is O1 log N and so we expect the contribution from the second term in 38, requiring 1’s at both distinct sites ˆ B x+e i t N , i = 1, 2, to be negligible in the limit. The same reasoning shows the product in the first term in 38 should be close to 1 and so we expect Ed N ,3 s Φ|F s −t N ≈ log N 4 N X x ∈S N Φs, x ˆ E ξ N s −t N ˆ B x t N 1{x | x + e 1 | x + e 2 } ≈ log N N X x ∈S N Φs, xξ N s −t N xlog N 3 ˆ P {0 | e 1 | e 2 } ≈X N s −t N Φ s −t N K, where the second line is easy to justify by summing over the values of ˆ B x t N , and the last line is immediate from 6. Integrating over s we arrive at 35. The key ingredient needed to justify the above heuristic simplification based on the sparseness of 1’s is Proposition 3.10 whose lengthy proof is in Section 5. 1206 3 Intermediate results for the proof of Theorem 1.5 We use the classical strategy of proving tightness of {X N } in the space DR + , M F R 2 , and then identify the limits. The main difficulty will come from the above drift term D N ,3 t Φ. Although it will be convenient to have Theorem 1.5 for a continuous parameter N ≥ 3, it suffices to prove it for an arbitrary sequence approaching infinity and nothing will be lost by considering N ∈ N ≥3 . This condition will be in force thoughout the proof of Theorem 1.5, as will the assumption that ξ N is deterministic and all the conditions of Theorem 1.5.

3.1 Tightness, moment bounds.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52