Tightness, moment bounds. getdoc7e8b. 765KB Jun 04 2011 12:04:34 AM

3 Intermediate results for the proof of Theorem 1.5 We use the classical strategy of proving tightness of {X N } in the space DR + , M F R 2 , and then identify the limits. The main difficulty will come from the above drift term D N ,3 t Φ. Although it will be convenient to have Theorem 1.5 for a continuous parameter N ≥ 3, it suffices to prove it for an arbitrary sequence approaching infinity and nothing will be lost by considering N ∈ N ≥3 . This condition will be in force thoughout the proof of Theorem 1.5, as will the assumption that ξ N is deterministic and all the conditions of Theorem 1.5.

3.1 Tightness, moment bounds.

Recall that a sequence of processes with sample paths in DR + , S for some Polish space S is C-tight in DR + , S iff their laws are tight in DR + , S and every limit point is continuous. Proposition 3.1. The sequence {X N , N ∈ N ≥3 } is C-tight in DR + , M F R 2 . Proposition 3.1 will follow from Jakubowski’s theorem see e.g. Theorem II.4.1 in [13] and the two following lemmas. Lemma 3.2. For any function Φ ∈ C 3 b R 2 , the sequence {X N Φ, N ∈ N ≥3 } is C-tight. Lemma 3.3. For any ε 0, any T 0 there exists A 0 such that sup N ≥3 P ‚ sup t ≤T X N t B0, A c ε Œ ε. Lemma 3.2 will be established by looking separately at each term appearing in 28. The difficulty will mainly lie in establishing tightness for the last term in 28. The proof of the two lemmas is given in Section 6. An important step in proving tightness will be the derivation of bounds on the first and second moments. It will be assumed that N ∈ N ≥3 until otherwise indicated. Proposition 3.4. There exists a c 3.4 0, and for any T 0 constants C a , C b , depending on T , such that for any t ≤ T , a E ” X N t 1 — ≤ € 1 + C a log N −16 Š X N 1 exp c 3.4 t , b E ” X N t 1 2 — ≤ C b € X N 1 + X N 1 2 Š , Part a of the above Proposition is proved in Subsection 4.4, part b is proved in Subsection 5.1. Note that a immediately implies the existence of a constant C ′ a depending on T such that for any t ≤ T , E ” X N t 1 — ≤ C ′ a X N 1. Moreover, by a, b and the Markov property, if we set C ab := C ′ a C b , we have for any s, t ∈ [0, T ], E ” X N s 1X N t 1 — ≤ C ab X N 1 + X N 1 2 . 40 For establishing tightness of some of the terms of 28, and also for proving the compact containment condition, Lemma 3.3, we will need a space-time first moment bound. Recall that t N = log N −19 . 1207 Suppose Φ : R + × R 2 → R. Define |Φ| Lip , respectively |Φ| 1 2 , to be the smallest element in R + such that |Φs, x − Φs, y| ≤ |Φ| Lip |x − y|, ∀s ≥ 0, x ∈ R 2 , y ∈ R 2 , |Φs − t N , x − Φs, x| ≤ |Φ| 1 2 p t N , ∀ s ≥ t N , x ∈ R 2 , We will write ||Φ|| Lip := ||Φ|| ∞ + |Φ| Lip , ||Φ|| 1 2 := ||Φ|| ∞ + |Φ| 1 2 and ||Φ|| := ||Φ|| ∞ + |Φ| Lip + |Φ| 1 2 . Obviously the definition of ||.|| Lip also applies to functions from R 2 into R. Define P N t , t ≥ 0 as the semigroup of the rate−N random walk on S N with jump kernel p N . Lemma 3.5. There exist δ 3.5 0, c 3.5 0 and for any T 0, there is a C 3.5 T , so that for all t ≤ T and any Ψ : R 2 → R + such that ||Ψ|| Lip ≤ T , E ” X N t Ψ — ≤ e c 3.5 t X N € P N t Ψ Š + C 3.5 log N −δ 3.5 X N 1 + X N 1 2 . This lemma requires a key second moment estimate see Proposition 3.10 below, it is proved in Subsection 5.3.

3.2 On the new drift term

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52