Proof of Proposition 3.10 getdoc7e8b. 765KB Jun 04 2011 12:04:34 AM

5.2 Proof of Proposition 3.10

Recall that p N t x = N P ˆ B N ,0 t = x and set p N ,z t x := p N t z − x. By assumption Nδ N → ∞ as N → ∞ so we can use the local limit theorem for the walk ˆB N see e.g., Lemma 7.3 c of [7] to obtain the existence of a constant C 71 such that 1 {|x− y|≤ p δ N } ≤ C 71 δ N p N 2 δ N y − x. 71 Therefore the desired result will follow if we can bound E –Z R 2 δ N p N 2 δ N y − xdX N t xd X N t y ™ as in the Proposition. By Chapman-Kolmogorov we have δ N N X z ∈S N E X N t p N ,z δ N 2 = E   log N 2 N 2 X x, y ∈S N ξ N t xξ N t yδ N   1 N X z ∈S N p N δ N z − xp N δ N z − y     = E   log N 2 N 2 X x, y ∈S N ξ N t xξ N t yδ N p N 2 δ N y − x   = E –Z R 2 δ N p N 2 δ N y − xdX N t xd X N t y ™ . 72 Set φ z s = p N ,z t −s+δ N , which satisfies A N φ z s + ˙ φ z s = 0, so that, from 28, we deduce that E X N t p N ,z δ N 2 ≤ 4 ” E[X N φ z 2 ] + 〈Mφ z 〉 t + D N ,2 t φ z 2 + D N ,3 t φ z 2 — . Using 72 and the above, then again Chapman-Kolmogorov, we obtain the bound: E –Z R 2 δ N p N 2 δ N y − xdX N t xd X N t y ™ ≤ 4[T + T 1 + T 2 + T 3 + T 4 ], 1221 where T := δ N N X z ∈S N E X N p N ,z t+ δ N 2 = E –Z R 2 δ N p N 2t+ δ N y − xdX N xd X N y ™ , T 1 := δ N N X z ∈S N E[ 〈Mφ z 〉 1,t ] = E   δ N log N 2 N Z t p N 2t −s+δ N X x, y ∈S N p N y − xξ N s x − ξ N s y 2 ds   , T 2 := δ N N X z ∈S N E[ 〈Mφ z 〉 2,t ], T 3 := E δ N log N 4 N 2 Z t Z t ds 1 ds 2 X x 1 ,x 2 ∈S N p N 2t −s 1 −s 2 +2δ N x 2 − x 1 × 2 Y i=1 β N 1 − ξ N s i x i f N 1 x i , ξ N s i 2 − β N 1 ξ N s i x i f N x i , ξ N s i 2 , T 4 := E δ N log N 8 N 2 Z t Z t ds 1 ds 2 X x 1 ,x 2 ∈S N p N 2t −s 1 −s 2 +2δ N x 2 − x 1 × 2 Y i=1 ξ N s i x i f N x i , ξ N s i 2 − 1 − ξ N s i x i f N 1 x i , ξ N s i 2 . We will handle each of these terms separately. Using 17, we immediately obtain T ≤ C 17 δ N t + δ N X N 1 2 . 73 We then consider T 1 which will turn out to be the main contribution, although not the most difficult to handle. As we already did before, we will condition back a bit in order to be able to use the voter estimates. This time however, we will need to condition back by u N := δ N 2 ∧ log N −11 . Let ∆ N s, x := E   X e ∈S N p N eξ N s x1 − ξ N s x + e F s −u N   − ˆE   X e ∈S N p N eξ N s −u N ˆ B x u N 1 − ξ N s −u N ˆ B x+e u N   . By the obvious analogues of 25 and Lemma 2.2, log N N X x ∈S N ∆ N s, x ≤ log N N X x ∈S N ˆ E     1 E x,x+e uN X y ∈˜B x uN ξ N s −u N y     ≤ 4u N r N exp2u N r N X N s −u N 1 ≤ C 74 log N −8 X N s −u N 1. 74 1222 Moreover, from the fact that ξ N s x ∈ {0, 1}, X x,e ∈S N p N eξ N s x − ξ N s x + e 2 = 2 X x,e ∈S N p N eξ N s x1 − ξ N s x + e ≤ 2 N log N X N s 1. Therefore, using 17, T 1 ≤ C 17 δ N log N E   Z t t − s + δ N −1 log N N 2 X x ∈S N ,e ∈S N p N eξ N s x1 − ξ N s x + eds   ≤ 2C 17 δ N log N E –Z u N t − s + δ N −1 X N s 1ds ™ +2C 17 δ N log N E   Z t ∨u N u N t − s + δ N −1 log N N X x ∈S N ˆ E h ξ N s −u N ˆ B x u N 1 − ξ N s −u N ˆ B x+e u N i ds   +2C 17 C 74 δ N log N −7 E   Z t ∨u N u N t − s + δ N −1 X N s −u N 1ds   =: T 1,1 + T 1,2 + T 1,3 , 75 where we used 74 for s ≥ u N in the last inequality. Then using Proposition 3.4 a, we obtain T 1,1 ≤ C 17 C ′ a log N u N X N 1, and as we will see this term is negligible compared to the bound we will obtain for T 1,2 . Notice that ξ N s −u N ˆ B x u N 1 − ξ N s −u N ˆ B x+e u N ≤ X w ∈S N ξ N s −u N w1 {ˆB x uN =w} 1 {x|x+e} uN . Thus, by translation invariance of our kernel p N , T 1,2 ≤ 2C 17 δ N log N E   Z t ∨u N u N t − s + δ N −1 X N s −u N 1 X y ∈S N ˆ P ˆ B u N = y, {0 | e} u N   ≤ C 76 δ N log 1 + T δ N X N 1, 76 where the above line was obtained using Proposition 3.4 a and 13. Finally, using once again Proposition 3.4 a, T 1,3 ≤ 2C 17 C 74 C ′ a δ N log N −7 log 1 + T δ N X N 1, so that this term is also negligible compared to T 1,2 . From 75 and the above estimates we deduce T 1 ≤ C 77 δ N log 1 + T δ N X N 1. 77 We now turn to bound T 2 . By summing over z in 32, and then using 17 and Lemma 5.1 a, we easily see that T 2 ≤ C 5.1 C 17 log N 4 N 2 Z t X N s 1 1 t − s + δ N ds 1223 Therefore, using Proposition 3.4 a we obtain T 2 ≤ C 78 log N 4 N 2 log 1 + T δ N X N 1, 78 which is negligible compared to the right-hand side of 77 as N → ∞, by our assumption that lim inf N →∞ p N δ N 0. We turn to bound T 4 , which comes from the new drift term. We have T 4 ≤ 2 δ N N X z ∈S N E    Z t ∨u N u N € d N ,3 s φ z s − E[d N ,3 s φ z s | F s −u N ] Š ds 2    +2 δ N N X z ∈S N E    Z t ∨u N u N E[d N ,3 s φ z s | F s −u N ] ds 2    +2E Z u N Z s 1 δ N log N 8 N 2 X x 1 ∈S N ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 × 2 Y i=1 ds i h ξ N s i x i f N x i , ξ N s i 2 − 1 − ξ N s i x i f N 1 x i , ξ N s i 2 i =: T 4,1 + T 4,2 + T 4,3 . We first handle T 4,1 . Note that if s 2 − u N s 1 , E   2 Y i=1 d N ,3 s i φ z s i − E h d N ,3 s i φ z s i | F s i −u N i   = 0, therefore T 4,1 = 4 δ N N X z ∈S N E h Z t ∨u N u N Z s 1 +u N s 1 ds 1 ds 2 2 Y i=1 d N ,3 s i φ z s i − E h d N ,3 s i φ z s i | F s i −u N ii . We have the evident bound on d N ,3 : |d N ,3 s φ z s | ≤ log N 4 N X x ∈S N φ z s xΞ N s x. 79 where we wrote Ξ N s x := ξ N s x + P e ∈S N p N eξ N s x + e. Therefore, using Chapman-Kolmogorov once again, and then 17, we find T 4,1 ≤ 4C 17 δ N E Z t ∨u N u N Z s 1 +u N s 1 log N 8 N 2 X x 1 ,x 2 2t + δ N − s 1 − s 2 −1 × 2 Y i=1 Ξ N s i x i + E h Ξ N s i x i | F s i −u N i ds 1 ds 2 . 80 1224 Using the Markov property and Proposition 3.4 a it comes easily that log N N X x i ∈S N E h Ξ N s i x i | F s i −u N i ≤ 2C ′ a X N s i −u N 1. We may therefore expand the product in 80 and bound each of the terms using the Markov prop- erty and Proposition 3.4. It follows that there exist constants C 81 , C ′ 81 depending on T such that, if t ≥ u N , T 4,1 ≤ C 81 δ N log N 6 X N 1 + X N 1 2 Z t u N Z s 1 +u N s 1 ds 1 ds 2 2t + δ N − s 1 − s 2 −1 ≤ C 81 δ N u N log N 6 X N 1 + X N 1 2 Z t u N ds 1 2t + δ N − 2s 1 − u N −1 ≤ C 81 u 2 3 N log N 6 δ N X N 1 + X N 1 2 δ 1 3 N log 2t + 2 δ N − 3u N 2 δ N − u N ≤ C 81 log N −1 δ N X N 1 + X N 1 2 δ 1 3 N log 1 + 2t − u N δ N ≤ C ′ 81 log N −1 δ N X N 1 + X N 1 2 , 81 where we used that u N ≤ δ N 2 ∧ log N −11 in the third line above, and the assumption δ N → 0 in the last. We now turn to the more difficult bound on T 4,2 . Recall the notation ˆ H N ξ N s −u N , x, u N from Subsec- tion 3.2, and H N s, x, u N from Subsection 4.1. Using Chapman-Kolmogorov again, we see that T 4,2 = E   2 Z t u N Z s 1 u N ds 1 ds 2 log N 8 δ N N 2 X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 2 Y i=1 H N s i , x i , u N   . 82 However, by 25, H N s, x, u N − ˆ H N ξ N s −u N , x, u N ≤ ˆE     1 {E x,x+e1,x+e2 } X y ∈˜B x,x+e1 uN ξ N s −u N y     , and Lemma 2.2 thus implies log N N X x ∈S N H N s, x, u N − ˆ H N ξ N s −u N , x, u N ≤ C 83 X N s −u N 1u N log N 3 . 83 From Proposition 3.4 a and 50, we see that log N N −1 X x ∈S N |H N s, x, u N | ≤ C ′ a X N s −u N 1. 1225 Using this, 17 and 83, we deduce E 2 Z t u N Z s 1 u N ds 2 ds 1 log N 8 δ N N 2 X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 |H N s 1 , x 1 , u N | × H N s 2 , x 2 , u N − ˆ H N ξ N s 2 −u N , x 2 , u N ≤ 2C 17 C 83 C ′ a log N 9 u N δ N Z t u N Z s 1 u N ds 2 ds 1 2t + δ N − s 1 − s 2 −1 E[X N s 1 −u N 1X N s 2 −u N 1]. Therefore by Proposition 3.4 and the fact that log N 9 u N ≤ log N −2 , the above is bounded by 2C 17 C 83 C ′ a C ab log N −2 δ N X N 1 + X N 1 2 . Similarly, log N N X x ∈S N | ˆ H ξ N s −u N , x, u N | ≤ log N N X x ∈S N ˆ E h ξ N s −u N ˆ B x u N + ξ N s −u N ˆ B x+e 1 u N i ≤ 2X N s −u N 1, so that, using 17 and 83, E 2 Z t u N Z s 1 u N ds 1 2ds 1 log N 8 δ N N 2 X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 | ˆ H N ξ N s 2 −u N , x 2 , u N | × H N s 1 , x 1 , u N − ˆ H N s 1 , x 1 , u N ≤ 2C ′ a C 17 C 83 log N 9 u N δ N Z t u N Z s 1 u N ds 2 ds 1 2t + δ N − s 1 − s 2 −1 E[X N s 1 −u N 1X N s 2 −u N 1] ≤ CT log N −2 δ N X N 1 + X N 1 2 . Therefore, we see from 82 and the above bounds, for C 84 = C 84 T , that T 4,2 ≤ C 84 X N 1 + X N 1 2 log N −2 δ N 84 +E   Z t u N Z s 1 u N log N 8 δ N N 2 X x 1 ,x 2 ∈S N p N 2 δ N +t−s 1 −s 2 x 2 − x 1 2 Y i=1 ds i ˆ H N ξ N s i −u N , x i , u N   . Recall from Subsection 3.2 that ˆ H N ξ N s −u N , x, u N = P 3 i=1 F N i s − u N , x, u N . First, by translation 1226 invariance of p, for i = 1, 2, log N N X x i ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 F N 1 s i − u N , x i , u N = log N N X w ∈S N ξ N s i −u N w X x i ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 × ˆ P ˆ B u N = w − x i , {0 | e 1 ∼ e 2 } u N − ˆPˆB e 1 u N = w − x i , {0 | e 1 ∼ e 2 } u N ≤ log N N X w ∈S N ξ N s i −u N w ˆ E 1 {0|e 1 ∼e 2 } uN p N 2t+ δ N −s 1 −s 2 w − ˆB u N − x 3 −i −p N 2t+ δ N −s 1 −s 2 w − ˆB e 1 u N − x 3 −i Hence, by Lemma 2.1, for i = 1, 2, log N N X x i ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 F N 1 s i − u N , x i , u N ≤ C 2.1 log N N X w ∈S N ξ N s i −u N w ˆ E • ˆ B u N − ˆB e 1 u N ˜ 2t + δ N − s 1 − s 2 −32 ≤ C 85 p u N X N s i −u N 12t + δ N − s 1 − s 2 −32 . 85 Furthermore, using again translation invariance of p and 13, log N N X x 1 ∈S N F N 1 s 1 − u N , x 1 , u N ≤ log N N X x 1 ∈S N ˆ E h ξ N s 1 −u N ˆ B x 1 u N + ξ N s 1 −u N ˆ B x 1 +e 1 u N 1 {x 1 |x 1 +e 1 ∼x 1 +e 2 } uN i ≤ log N N X w ∈S N ξ N s 1 −u N w X x 1 ∈S N ˆ P ˆ B u N = w − x 1 , {0 | e 1 ∼ e 2 } u N +ˆ P ˆ B e 1 u N = w − x 1 , {0 | e 1 ∼ e 2 } u N ≤ 2C 15 X N s 1 −u N 1logN u N −1 ≤ C 86 X N s 1 −u N 1log N −1 . 86 We next handle F N 2 s − u N , x, u N and F N 3 s − u N , x, u N together. Using translation invariance of p 1227 and 17, log N N X x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 |F N 2 s 2 − u N , x 2 , u N | + |F N 3 s 2 − u N , x 2 , u N | ≤ log N N X x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 ×9 ˆE h ξ N s 2 −u N ˆ B x 2 u N + ξ N s 2 −u N ˆ B x 2 +e 1 u N 1 {x 2 |x 2 +e 1 |x 2 +e 2 } uN i ≤ 9C 17 2t + δ N − s 1 − s 2 −1 log N N X w ∈S N ξ N s 2 −u N w × X x 2 ∈S N 1 X i=0 ˆ P ˆ B e i u N = w − x 2 , {0 | e 1 | e 2 } u N ≤ C 87 log N −3 2t + δ N − s 1 − s 2 −1 X N s 2 −u N 1, 87 where we used 6 in the last inequality above, and have set C 87 := 9C 17 ¯ K, ¯ K as in 16. For i = 1, 2, a similar argument leads to log N N X x i ∈S N |F N 2 s i − u N , x i , u N | + |F N 3 s i − u N , x i , u N | ≤ C 88 log N −3 X N s i −u N 1. 88 We now use equation 85, first for i = 2, then for i = 1, and then equation 87 to obtain log N 8 δ N N 2 Z t u N Z s 1 u N ds 2 ds 1 E X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 2 Y i=1 3 X j=1 F N j s i − u N , x i , u N ≤ log N 6 δ N Z t u N Z s 1 u N E log N N X x 1 ∈S N    F N 1 s 1 − u N , x 1 , u N + 3 X j=2 F N j s 1 − u N , x 1 , u N    ×C 85 p u N X N s 2 −u N 1 2t + δ N − s 1 − s 2 −32 ds 2 ds 1 +log N 6 δ N Z t u N Z s 1 u N E log N N X x 2 ∈S N 3 X j=2 F N j s 2 − u N , x 2 , u N C 85 p u N X N s 1 −u N 1 × 2t + δ N − s 1 − s 2 −32 ds 2 ds 1 +C 87 log N 3 δ N Z t u N Z s 1 u N E X N s 2 −u N 1 log N N X x 1 ∈S N 3 X j=2 F N j s 1 − u N , x 1 , u N × 2t + δ N − s 1 − s 2 −1 ds 2 ds 1 . 1228 Using 86, 88 it follows from the above inequality that log N 8 δ N N 2 Z t u N Z s 1 u N ds 1 ds 2 E X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 2 Y i=1 3 X j=1 F N j s i − u N , x i , u N ≤ C 85 C 86 log N + 2C 88 log N 3 p u N log N 6 δ N Z t u N Z s 1 u N E h X N s 1 −u N 1X N s 2 −u N 1 i 2t + δ N − s 1 − s 2 3 2 ds 2 ds 1 +C 87 C 88 δ N Z t u N Z s 1 u N E h X N s 1 −u N 1X N s 2 −u N 1 i 2t + δ N − s 1 − s 2 −1 ds 2 ds 1 . Using Proposition 3.4 and the subsequent 40 in the above, it then follows from 84 that T 4,2 ≤ C 89 X N 1 + X N 1 2 δ N ” log N −2 + log N 5 p u N + 1 — ≤ 2C 89 X N 1 + X N 1 2 δ N . 89 The term T 4,3 is much easier to handle. Indeed, using 17 and the trivial bound 2 Y i=1 h ξ N s i x i f N x i , ξ N s i 2 − 1 − ξ N s i x i f N 1 x i , ξ N s i 2 i ≤ 2 Y i=1 ξ N s i x i + f N 1 x, ξ N s i , we find T 4,3 ≤ 8C 17 log N 6 δ N Z u N Z s 1 2t + δ N − s 1 − s 2 −1 E h X N s 1 1X N s 2 1 i ds 2 ds 1 . Using u N ≤ δ N 2, we see that Z u N Z s 1 ds 2 ds 1 2t + δ N − s 1 − s 2 −1 ≤ u N log 2t + δ N 2t + δ N − u N ≤ u N log 2t + δ N 2t + δ N . Thus, using 40 and our choice of u N , T 4,3 ≤ 8C 17 C ab log N 6 δ N X N 1 + X N 1 2 u N log 2t + 2 δ N 2t + δ N ≤ C 90 log N −5 δ N X N 1 + X N 1 2 . 90 Recall T 4 = P 3 i=1 T 4,i . By grouping 81, 89, 90, we finally obtain T 4 ≤ CT δ N X N 1 + X N 1 2 . 91 We finish by providing an upper bound for T 3 . We give less details, because the method is very similar to the one we used for T 4 , and the smaller power of log N makes this term easier to handle. As we did for T 4 , we may bound T 3 by the sum of three terms : 1229 T 3 ≤ C δ N N X z ∈S N E    Z t ∨u N u N € d N ,2 s φ z s − E[d N ,2 s φ z s | F s −u N ] Š ds 2    +E    Z t ∨u N u N E[d N ,2 s φ z s | F s −u N ]ds 2    +C E   Z u N Z s 1 log N 4 N 2 δ N X x 1 ∈S N ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 2 Y i=1 ds i Ξ N s i x i   =: T 3,1 + T 3,2 + T 3,3 , where Ξ N is defined after 79, and we used f N x, ξ N s 2 ≤ 1, f N 1 x, ξ N s 2 ≤ f N 1 x, ξ N s to bound the integral on [0, u N ] 2 . As for T 4,1 , we have T 3,1 = C δ N N X z ∈S N E h Z t ∨u N u N Z s 1 +u N s 1 ds 1 ds 2 2 Y i=1 d N ,2 s φ z s i − E h d N ,2 s φ z s i | F s i −u N ii . We then use the following bound on d N ,2 compare 79: |d N ,2 s φ z s | ≤ β log N 2 N X x ∈S N φ z s xΞ N s x. Now we may reason exactly as for T 4,1 to obtain compare 81 T 3,1 ≤ C 92 log N −5 δ N X N 1 + X N 1 2 . 92 Let us now deal with T 3,2 . For s ≥ u N , we let H N s, x, u N := E ” ξ N s x f N x, ξ N s + 1 − ξ N s x f N 1 x, ξ N s | F s −u N — , ˆ H N s, x, u N := ˆ E h ξ N s −u N ˆ B x u N 1 − ξ N s −u N ˆ B x+e 1 u N + 1 − ξ N s −u N ˆ B x u N ξ N s −u N ˆ B x+e 1 u N i . As for H, ˆ H, we get by the analogues of 25 and Lemma 2.2 that log N N X x ∈S N H N s, x, u N − ˆ H N s, x, u N ≤ C 93 X N s −u N 1u N log N 3 . 93 Argue as when dealing with T 4,2 to get that for some CT 0, E 2 Z t u N Z s 1 u N ds 1 ds 2 log N 4 δ N N 2 X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 H N s 1 , x 1 , u N × H N s 2 , x 2 , u N − ˆ H N s 2 , x 2 , u N ≤ CT log N −6 δ N X N 1 + X N 1 2 , 1230 and E 2 Z t u N Z s 1 u N ds 1 ds 2 log N 4 δ N N 2 X x 1 ,x 2 ∈S N p N 2t+ δ N −s 1 −s 2 x 2 − x 1 ˆ H N s 1 , x 1 , u N × H N s 2 , x 2 , u N − ˆ H N s 2 , x 2 , u N ≤ CT log N −6 δ N X N 1 + X N 1 2 , and therefore T 3,2 ≤ C 94 X N 1 + X N 1 2 log N −6 δ N 94 +C 94 E   Z t u N Z s 1 u N log N 4 δ N N 2 X x 1 ,x 2 ∈S N p N 2 δ N +t−s 1 −s 2 x 2 − x 1 2 Y i=1 ds i ˆ H N s i , x i , u N   . Then, log N 2 N X x ∈S N ˆ H N s, x, u N = 2 log N 2 N X x ∈S N ˆ E h ξ N s −u N ˆ B x u N 1 − ξ N s −u N ˆ B x+e 1 u N 1 {x|x+e 1 } uN i ≤ 2 log N 2 N X x,w ∈S N ξ N s −u N wˆ P ˆ B u N = w − x, {0 | e 1 } u N ≤ 2C 15 log N logN u N −1 X N s −u N 1, by the definition of C 15 in 15. We deduce from the above, 94 and 17 that T 3,2 ≤ C 94 X N 1 + X N 1 2 log N −6 δ N +C 95 δ N E   Z t u N Z s 1 u N X N s 1 −u N 1X N s 2 −u N 1ds 1 ds 2   ≤ C ′ 95 X N 1 + X N 1 2 δ N , 95 where we used Proposition 3.4 in the last line. Finally, using the same method as for bounding T 4,3 , T 3,3 ≤ C 96 log N −9 δ N X N 1 + X N 1 2 . 96 Grouping 92, 95 and 96, we find T 3 ≤ C 97 δ N X N 1 + X N 1 2 . 97 We may now conclude the proof of Proposition 3.10. Indeed, using 73, 77, 78, 91, 97, E –Z Z δ N p N 2 δ N y − xdX N t xd X N t y ™ ≤ CT X N 1 + X N 1 2 δ N 1 + log 1 + T δ N + 1 t + δ N , which, as explained in the beginning of the proof, is the desired bound. 1231

5.3 Space-time first moment bound : proof of Lemma 3.5

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52