dipertimbangkan kurang baik, 0,7 dapat diterima dan diatas 0,8 baik. Uji reliabilitas dalam penelitian ini dilakukan dengan menggunakan bantuan program SPSS Versi
21
3.6.3 Hasil Uji Validitas dan Uji Reabilitas
Pengujian validitas dilakukan dengan penyebaran kuesioner pertanyaan yang menyangkut variabel bebas prestasi kerja dan upah dan variabel terikat anggaran
kepada beberpa perusahaan Perbankan di Indonesia.
3.7 Teknik Analisis Data
3.7.1 Analisi Deskriptif
Analisis Deskriptif yaitu salah satu model analisis dengan cara data yang disusun dikelompokkan, kemudian dianalisis sehingga diperoleh gambaran tentang
masalah yang dihadapi dan untuk menjelaskan hasil perhitungan. Data diperoleh dari data primer berupa kuesioner yang telah diisi oleh sejumlah responden.
3.8 Uji Asumsi Klasik
3.8.1 Uji Normalitas
Uji normalitas bertujuan untuk menguji apakah dalam model regresi variabel terikat dependent dan variabel bebas independent memiliki distribusi normal.
Ada dua cara untuk mendeteksi apakah residual berdistribusi normal atau tidak yaitu dengan analisis grafik dan uji statistik.
1. Analisis Grafik Analisis Grafik dapat dilakukan dengan dua alat, yaitu grafik histogram dan
grafik P-P plot. Pada grafik histogram, data yang mengikuti atau mendekati distribusi normal adalah distribusi data yang membentuk lonceng. Pada grafik P-
P plot, sebuah data dikatakan berdistribusi normal apabila titik-titik datanya tidak menceng ke kiri atau ke kanan melainkan menyebar disekitar garis diagonal.
2. Analisis Statistik Untuk melengkapi hasil analisi grafik normal probability plot digunakan uji
statistic non-parametrik Kolmogorov-Smirnov KS. Pada uji statistik one-sample Kolmogorov-Smirnov dapat dilihat probabilitas signifikan terhadap variabel. Jika
probabilitas signifikan diatas 0,05, maka variabel tersebut terdistribusi secara normal.
3.8.2 Uji Multikolinearitas
Tujuan dari uji multikolinearitas adalah untuk menguji apakah model regresi ditemukan adanya korelasi antar variabel bebas. Model regresi yang baik adalah
apabila tidak terjadi kolerasi diantara variabel bebas. Apabila terjadi saling berkolerasi, maka variabel-variabel tersebut tidak orthogonal. Menurut Ghozali
2005 : 91 “variabel orthogonal adalah variabel bebas yang nilai korelasi antar sesama variabel sama dengan nol, dimana digunakan untuk mendeteksi ada atau
tidak ada multikolinearitas di dalam model regresi”, adalah sebagai berikut : 1. Nilai R
2
yang dihasilkan oleh suatu estimasi model regresi empiris sangat tinggi, tetapi secara individual variabel bebas banyak yang tidak signifikan
memperngaruhi variabel terikat.
2. Jika antar variabel bebas ada kolerasi yang cukup tinggi diatas 0, 90 maka hal ini merupakan indikasi adanya multikolinearitas. Jika tidak ada kolerasi yang
tinggi antar variabel bebas. 3. Multikolinearitas dapat juga dilihat dari nilai tolerance dan lawannya Variance
Inflactor Factor VIF. Kedua ukuran ini menunjukkan setiap variabel bebas manakah yang dijelaskan variabel bebas lainnya. Artinya setiap variabel bebas
menjadi variabel tidak bebas dan di regresi terhadap variabel bebas lainnya. Tolerance mengukur variabilitas variabel bebas yang terpilih yang tidak
dijelaskan oleh variabel bebas lainnya. Jadi nilai tolerance yang rendah sama dengan nilai VIF tinggi karena VIF = 1tolerance.
Nilai cutoff yang dipakai untuk menunjukkan ada atau tidaknya multikolinearitas adalah :
VIF 5 → ada multikolinearitas
VIF 5 → tidak ada multikolinearitas
Untuk mengetahui adanya multikolinearitas digunakan persamaan Varian Inflasi Factor VIF. Jika nilai VIF 4 sampai dengan 5 maka indikasi terjadi
multikolinearitas.
3.8.3 Uji Heteroskesdasitas