Reanalisis gempa bumi Mentawai dengan Deconvolusi-Inversi W-Phase sebagai acuan prediksi tsunami

(1)

REANALISIS GEMPABUMI MENTAWAI

DENGAN

DECONVOLUSI-INVERSI

W-PHASE

SEBAGAI ACUAN PREDIKSI TSUNAMI

Skripsi

Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Sains

pada Fakultas Sains dan Teknologi

Universitas Islam Negeri Syarif Hidayatullah Jakarta

Oleh

ARIF NUROKHIM

NIM : 108097000031

PROGRAM STUDI FISIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH

JAKARTA


(2)

PENGESAHAN UJIAN

Skripsi yang berjudul

Reanalisis Gempa bumi Mentawai dengan

Deconvolusi-Inversi W-Phase

sebagai Acuan Prediksi Tsunami

” telah diuji dan

dinyatakan lulus dalam sidang Munaqosyah Fakultas Sains dan Teknologi,

Universitas Islam Negeri Syarif Hidayatullah Jakarta pada hari

Jum’at

tanggal

18

februari 2011.

Skripsi ini telah diterima sebagai salah satu syarat untuk

memperoleh gelar Sarjana Strata Satu ( S1 ) Jurusan Fisika.

Jakarta, ... 2011

Tim Penguji,

Penguji I

Penguji II

Arif Tjahjono, M.Si

Asrul Aziz, M.Si

NIP :19751107 200701 1 015

NIP : 19570617198503 1 001

Mengetahui,

Dekan Fak. Sains dan Teknologi

Ketua Jurusan Fisika

DR. Syopiansyah Jaya Putra, M.Sis

Drs. Sutrisno, M.Si

NIP : 19680117 200112 1 001 NIP : 19590202 198203 1 005


(3)

LEMBAR KEASLIAN SKRIPSI

Dengan ini saya menyatakan bahwa Skripsi ini merupakan karya tulis saya

sendiri dan bukan merupakan tiruan, salinan atau duplikat dari skripsi yang telah

dipergunakan untuk mendapatkan gelar kesarjanaan baik dilingkungan Universitas

Islam Negeri Syarif Hidayatullah Jakarta maupun di perguruan tinggi lain, serta

belum pernah dipublikasikan.

Pernyataan ini dibuat dengan penuh kesadaran dan rasa tanggung jawab

serta bersedia menerima segala resikonya jika ternyata pernyataan diatas tidak

benar.

Jakarta, Januari 2011

ARIF NUROKHIM

NIM. 108097000031


(4)

Sesungguhnya dalam penciptaan langit dan bumi dan silih bergantinya

malam dan siang terdapat tanda-tanda bagi orang

orang yang berakal

(Al Imron :190)

„Dan telah Kami jadikan di bumi ini gunung

-gunung yang kokoh supaya

bumi itu (tidak) guncang bersama mereka dan telah Kami jadikan pula di

bumi ini jalan-jalan yang luas, agar mereka mendapat petunjuk. Dan kami

jadikan langit itu sebagai atap yang terpelihara,sedang mereka berpaling

dari segala tanda-tanda kekuasaan Allah yang terdapat

padanya“

(Al Anbiyaa : 31-32)

„Tidakkah kamu melihat bahwa Allah mengarak awan, kemudian

mengumpulkan antara (bagian-bagian) nya kemudian menjadikannya

bertindih-tindih. Maka kelihtanlah olehmu hujan keluar dari celah-celahnya.

Dan Allah (juga) menurunkan (butiran-butiran) es dari langit, yaitu dari

gumpalan-gumpalan awan seperti gunung-gunung, maka di timpakan-Nya

(butiran-butiran) es itu kepada siapa yang di kehendaki-Nya. Kilauan kilat

awan itu hampir-

hampir menghilangkan penglihatan“.

(An Nur : 43)


(5)

KATA PENGANTAR

Bismillahirahmanirrahim,

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah

melimpahkan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan

Skripsi yang berjudul

REANALISIS GEMPABUMI MENTAWAI DENGAN

DECONVOLUSI-INVERSI

W-PHASE SEBAGAI ACUAN PREDIKSI

TSUNAMI”

dengan baik. Skripsi ini merupakan salah satu syarat kelulusan

menempuh perkuliahan jenjang Sarjana (S1) di Program Studi Fisika, Jurusan

Geofisika - Universitas Islam Negeri Syarif Hidayatullah Jakarta.

Penyusunan skripsi ini tidak terlepas dari bantuan dan dukungan dari

berbagai pihak. Oleh karena itu pada kesempatan ini penulis menyampaikan

terima kasih kepada:

1.

Bapak DR. Syopiansyah Jaya Putra, M.Sis Selaku Dekan Fakultas Sains

dan Teknologi Universitas Islam Negeri Syarif Hidayatullah - yang telah

memberikan izin penulisan skripsi.

2.

Bapak Drs. Sutrisno, M.Si. selaku Ketua Jurusan Program Studi Fisika

Universitas Islam Negeri Syarif Hidayatullah yang telah memberikan izin,

bimbingan dan arahan kepada penulis.

3.

Ibu Siti Ahmiatri Saptari, M.Si. Selaku Dosen Pembimbing II yang dengan

sabar membimbing, mengarahkan, memberikan saran kepada penulis

sampai selesai penulisan skripsi ini.

4.

Rembulan di langit hatiku, Rahayu Ummi hikmah yang telah

menginspirasi, memotivasi dan memberikan semangat dalam kuliah dan

proses penulisan skripsi ini hingga selesai. Semoga kebarakahan atas

keluarga kecil kita sayang.

5.

Orang tua dan mertua beserta keluarga atas do’a dan dukungan

ya yang tak

terhingga sehingga terselesaikanya skripsi dan kuliah di UIN Syarif

Hidayatullah Jakarta.


(6)

6.

Teman- teman kuliah dari BMKG Sirojudin, Novi dan mas fauzi yang

bersama - sama dalam suka duka menjalani kuliah di UIN Syarif

Hidayatullah Jakarta.

7.

Teman - teman Fisika UIN angkatan 2006, 2007 dan 2008 yang tidak bisa

disebutkan disini yang dengan kebersamaan dan kekompakanya selama

dalam menjalani perkuliahan di UIN Syarif Hidayatullah Jakarta.

8.

Teman - teman kantor kelompok 1 & 5 khususnya dan teman - teman staf

operasional Gempabumi dan Tsunami BMKG yang tidak bisa disebutkan

disini yang terus menyemangati dan memberikan toleransi selama

menjalani perkuliahan di UIN Syarif Hidayatullah Jakarta.

9.

Terkhusus untuk teh Okke (atas oleh-oleh

W-phase

dari Jepang-nya dan

juga lappie-nya yang dengan senang hati di pinjamkan) serta sabar atas

waktunya yang terganggu dengan kehadiranku.

10.

Teman -

teman kajian di Mushola “Al

-Badriyah

” yang memotivasi dan

memberikan semangat dalam menjalani perkuliahan di UIN Syarif

Hidayatullah Jakarta.

Penulis berharap semoga pihak yang telah membantu dalam penyusunan

skripsi ini mendapatkan balasan kebaikan dari Allah Subhanahu Wa Ta’ala.

Penulis menyadari bahwa tulisan ini masih jauh dari sempurna karena

keterbatasan kemampuan dan pengetahuan penulis sendiri. Penulis hanya berharap

semoga karya kecil ini dapat memberikan kemanfaatan bagi kehidupan, dan

menambah kebaikan ketika menghadapi hari pembalasan. Untuk perbaikan skripsi

ini, penulis mengharapkan kritik, saran dan pendapat yang membangun.

Jakarta, Januari 2011


(7)

DAFTAR ISI

JUDUL...i

LEMBAR PENGESAHAN...ii

LEMBAR KEASLIAN SKRIPSI...iii

KATA PENGANTAR...v

DAFTAR ISI...vii

DAFTAR GAMBAR...ix

DAFTAR TABEL...x

DAFTAR LAMPIRAN...xi

ABSTRAK...xii

BAB I PENDAHULUAN...1

1.1

Latar belakang………

. .1

1.2

T

ujuan penulisan………

...6

1.3

Man

faat penulisan………

.6

1.4

Batasan masalah………

7

1.5

Sistematika penulisan………

7

BAB II TINJAUAN PUSTAKA

2.1

Teori Gempa bumi………

9

2.2

Jenis-j

enis Gempa bumi………...…

11

2.3

Gelombang gempa bumi………

..13

2.4

Skala kekuatan Gempa bumi………

...17


(8)

2.6

Inversi W-

phase………

...24

2.7

Simulasi tsunami...26

2.8

Parameter patahan dan deformasi dasar laut………..

.27

BAB III METODE PENELITIAN

3.1

Data... 30

3.2

Metode Penelitian...31

BAB IV HASIL DAN PEMBAHASAN... 37

BAB V PENUTUP

5.1

Kesimpulan...45

5.2

Saran...46

DAFTAR PUSTAKA...47


(9)

DAFTAR GAMBAR

Gambar 1.1. Lempeng tektonik di Indonesia...2

Gambar 1.2. Daerah rawan tsunami di Indonesia...3

Gambar 2.1. Skematik proses gempa bumi

………...9

Gambar 2.2. P

enjalaran gelombang P dan S………

15

Gambar 2.3.

Penjalaran gelombang permukaan………

.. 16

Gambar 2.4.

Seismogram gempa bumi………

17

Gambar 2.5.

Geometri patahan………

...

………

..28

Gambar 3.1. P

eta sebaran stasiun Global………

. 30

Gambar 3.2.

Contoh seismogram velocity record………

31

Gambar 3.3. W-

phase gempa bumi Mentawai………

..35

Gambar 3.4.

posisi tide gauge………...36

Gambar 4.1. Matching W-phase observasi

dan sintetis………38

Gambar 4.2. focal mechanism hasil inversi

………..39

Gambar 4.3.

pemodelan patahan………

...41

Gambar 4.4. Grafik waktu tiba

gelombang tsunami……….42

Gambar 4.5. Grafik tinggi gelomb

ang tsunami maksimal………42

Gambar 4.6.

Grafik tinggi gelombang terhadap waktu………....43


(10)

DAFTAR TABEL

Tabel 4.1. parameter centroid sebagai input inversi W-phase...38

Table 4.2. parameter focal dan Mw hasil inversi

……….……….

39

Tabel 4.3.

hasil perhitungan patahan dan deformasi dasar laut ……

...

……

...40


(11)

DAFTAR LAMPIRAN

LAMPIRAN I

: Perbandingan Waveform Observasi dan Sintetis

LAMPIRAN II

: Hasil simulasi tsunami

LAMPIRAN III

: Output hasil Inversi

LAMPIRAN IV

: Perbandingan lokasi hasil analisa dari berbagai instansi

LAMPIRAN V

: Hasil analisa gempa mentawai oleh BMKG dengan system

Seiscomp3

LAMPIRAN VI

: Seismisitas Indonesia


(12)

ABSTRAK

Penelitian menunjukkan inversi W-phase untuk menganalisa ulang gempa

bumi Mentawai 25 oktober 2010 dengan menggunakan data long-periode

seismograf jaringan global. Perbandingan magnitude moment (Mw) dengan

deconvolusi-inversi W-phase menghasilkan parameter gempa yang hampir sama

dengan parameter gempabumi yang di release oleh Global CMT, yaitu magnitude

moment sebesar Mw = 7,8 SR untuk GCMT dan Mw = 7,89 SR untuk inversi

W-phase. Patahan dan deformasi dasar laut akibat gempa Mentawai sebesar : Panjang

106,217 kilometer, lebar 53,11 kilometer dan slip 5.14 meter dengan Strike

0

5 ,

317

, Dip

4,60

, dan Rake

91

.

8

0

.

Hasil simulasi tsunami dengan TUNAMI-N2, perkiraan datangnya

gelombang tsunami menghantam pantai yaitu Sibaru-baru sekitar 10 menit setelah

gempa, Sibigau 11 menit, Pagai Utara 16 menit, Sipora 26 menit, Enggano 35

menit, Teluk Dalam 48 menit, Seblat 66 menit, dan Padang 70 menit. Untuk

daerah yang dekat dengan sumber, dimana tsunami datang kurang dari 30 menit,

analisa W-phase tidak dapat digunakan untuk peringatan dini tsunami, karena

analisis W-phase memberikan informasi long-periode dari sumber gempa bumi

yang lebih cepat dari inversi GCMT. Sangat di rekomendasikan kepada Badan

Meteorologi Klimatologi dan Geofisika (BMKG), agar metode inversi W-phase

digunakan dalam updating peringatan dini tsunami di Indonesia.


(13)

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Indonesia terletak di daerah seismik yang sangat aktif di karenakan tepat

berada di dekat pertemuan tiga lempeng tektonik utama yaitu lempeng Eurasia

(Eurasian plate) di sebelah utara, lempeng Pasifik (Pacific plate) di sebelah timur

dan Indo-Australia

(Indo-Australian plate)

di sebelah selatan, selain juga

lempeng kecil seperti lempeng Filipina (Philippine plate) di sekitar Sulawesi dan

Maluku. Interaksi antara lempeng tektonik ini menyebabkan tingkat seismisitas

yang sangat tinggi di daerah Indonesia. Lempeng Indo-Australia bergerak kearah

timur laut dengan kecepatan 71 mm/tahun. Lempeng ini berinteraksi dengan

lempeng Eurasia yang relatif diam, menyebabkan zona subduksi membujur

sepanjang pulau Sumatera dan Jawa hingga Nusa Tenggara. Daerah inilah yang

merupakan daerah gempa bumi aktif. Lempeng tektonik Indonesia, dapat dilihat

pada gambar .1.1.

Lempeng pasifik yang bergerak kearah barat dengan kecepatan 110

mm/tahun, berinteraksi dengan lempeng Indo-Australia menyebabkan zona

subduksi di sebelah utara Papua hingga Maluku. Disekitar Pulau Sulawesi,

tumbukan kedua lempeng tersebut bertemu dengan lempeng kecil yaitu Lempeng

Filipina menyebabkan adanya

triple junction (pertemuan tige lempeng).

Pertemuan tiga lempeng tersebut menyebabkan daerah Sulawesi, Maluku, Papua


(14)

Barat merupakan daerah seismik paling aktif. (Darwin

Harahap, 1999, Pendahuluan Geofisika

Gambar.1.1 Lempeng tektonik Indonesia

Indonesia juga merupakan daerah yang rawan dengan gelombang tsunami,

dikarenakan hampir 60 % dari seluruh luas wilayah Indonesia adalah lautan.

Gempa bumi tektonik, yang di akibatkan gesekan antar lempeng, merupakan

pembangkit tsunami terbesar yang terjadi di Indonesia. Zona potensi tsunami

terbesar di Indonesia yaitu sepanjang pantai selatan pulau Sumatera, selatan pulau

Jawa, pulau Flores, daerah pantai pulau Sulawesi dan daerah pantai pulau Papua.

Dari tahun 1992 hingga desember 2010, terjadi 24 gempa bumi yang berpotensi

tsunami. Dari 24 gempa tersebut, 7 diantaranya mengakibatkan tsunami merusak.

(Tri

Handayani, 2009, W Phase Analysis for Tsunami Warning).

Gambar.1.2


(15)

Gambar 1.2. Daerah Rawan Tsunami di Indonesia

Gempa bumi Mentawai yang terjadi pada tanggal 25 Oktober 2010 tepatnya

pada posisi episenter 3.61

0

LS

99.93

0

BT dengan waktu kejadian gempa

(Origin Time) 14:42:22

UTC atau (21:42:22 WIB) adalah salah satu contoh

gempabumi yang menimbulkan gelombang tsunami yang cukup tinggi. Gempa

berkekuatan 7,2 SR (BMKG) ini, mengakibatkan sedikitnya 77 desa tersapu

gelombang tsunami. Menurut laporan akhir dari Pemerintah Kabupaten

Kepulauan Mentawai, Sumatera Barat, gempa dan tsunami Mentawai

menyebabkan kerusakan material yang sangat besar dan korban jiwa sekitar 456

jiwa. (Detik.com 25 november 2010).

Berdasarkan prosedur standar operasional Pusat Gempa Nasional, Badan

Meteorologi, Klimatologi, dan Geofisika (BMKG), gempabumi dengan

magnitudo

≥7.0 SR, keda

laman <70 km, episenter di laut, maka dikeluarkan


(16)

warning tsunami sebagai peringatan awal kepada masyarakat sekitar episenter

untuk melakukan evakuasi ke tempat yang lebih aman.

Sejak di bangunnya Ina-TEWS (Indonesia Tsunami Early Warning System),

diharapkan dalam 5 menit pertama setelah terjadi gempabumi, informasi

gempabumi yang berpotensi tsunami telah tersampaikan. Informasi tersebut

disampaikan kepada media elektronik dan cetak, pemerintah daerah dan pejabat

terkait maupun masyarakat secara langsung. Oleh karena hal tersebut, di harapkan

sebuah metode penentuan parameter gempabumi yang tepat sebagai langkah awal

untuk meningkatkan ketepatan warning tsunami.

Penentuan skala kekuatan relatif gempa bumi yang ada saat ini,

menggunakan hasil pengukuran amplitude awal gelombang P, rekaman sinyal

gempabumi (seismogram) yang tercatat di stasiun pencatat gempa. Metode ini

menghasilkan nilai magnitude dalam waktu yang sangat cepat, dikarenakan waktu

tiba gelombang P merupakan gelombang yang pertama kali tercatat oleh

seismometer. Akan tetapi, hasil dari penghitungan metode ini belum sepenuhnya

menggambarkan energi yang dilepaskan di sumber gempabumi, dikarenakan

dalam proses penjalarannya energi yang berupa gelombang seismik mengalami

pelemahan karena absorbsi dari batuan yang dilaluinya, sehingga energi yang

sampai ke stasiun pencatat kurang dapat menggambarkan energi gempabumi di

pusat gempabumi. (Gunawan

Ibrahim dan Subardjo, 2003, Pengetahuan Seismologi)

Metode penentuan skala kekuatan relatif gempabumi yang lain adalah

menggunakan hasil pengukuran amplitude gelombang Surface (gelombang


(17)

Rayleigh dan gelombang Love), dimana gelombang ini tiba beberapa saat setelah

gelombang S (sekunder). Metode ini menghasilkan nilai magnitude yang relatif

baik dalam merepresentasikan energi yang dipancarkan oleh gempa bumi hingga

permukaan. Kekurangan dari metode ini membutuhkan waktu yang relatif lama ,

sekitar 30 menit, untuk mendapatkan hasil penghitungan magnitude ini

dikarenakan gelombang Surface merupakan gelombang yang paling akhir dalam

urutan waktu tiba gelombang gempa bumi.

Dalam penelitian ini diperkenalkan metode inversi

W-phase untuk

menentukan magnitudo moment (Mw)

dan mekanisme sumber

(source

mechanism) gempa bumi.

Magnitude moment merupakan jenis magnitude yang paling lengkap dimana magnitude ini mempergunakan moment seismik sebagai faktor penentu besarnya magnitude. Momen seismik dapat diestimasi dari dimensi pergeseran bidang sesar atau dari analisis karakteristik gelombang gempabumi yang direkam di stasiun pencatat khususnya dengan seismograf periode bebas (broadband seismograph). Dengan memasukkan dimensi pergeseran bidang sesar pada sumber gempa, sehingga magnitude ini dapat dengan tepat menggambarkan seberapa besar energi yang dipancarkan oleh gempa bumi. Dengan demikian, m

etode ini diharapkan menjadi sebuah solusi awal

untuk meningkatkan ketepatan informasi dan warning tsunami berdasarkan hasil

penghitungan parameter gempabumi (hiposenter dan magnitudo) yang

dikeluarkan oleh BMKG.


(18)

1.2.Tujuan Penulisan

Tulisan ini bertujuan untuk :

1.

Menganalisa ulang gempabumi mentawai dengan metode inversi

W-Phase untuk menentukan Magnitude moment (Mw)

2.

Menentukan parameter sumber seismik (seismic source) gempa bumi

Mentawai 25 Oktober 2010

3.

Membuat simulasi tsunami untuk memprediksi waktu tiba dan

ketinggian gelombang tsunami

1.3.Manfaat Penulisan

Dari penelitian ini, diharapkan dapat memberikan manfaat antara lain :

1.

Dapat menentukan besarnya momen seismik dan Magnitudo moment

(Mw) yang merupakan gambaran energi gempa bumi.

2.

Dapat menentukan parameter sumber seismik guna penentuan

panjang, lebar, besar regangan dari patahan akibat gempa bumi

Mentawai.

3.

Sebagai evaluasi, dengan memberikan informasi pembanding berupa

besar kekuatan gempabumi.

4.

Dapat melakukan simulasi Tsunami untuk memperkirakan waktu tiba

dan ketinggian gelombang tsunami.


(19)

5.

Dapat menambah pengetahuan baru tentang metode penentuan

parameter gempabumi dan tsunami

1.4. Batasan Masalah

Dalam penelitian ini, lingkup penelitian dibatasi berupa :

1.

Penentuan besarnya Magnitudo moment gempabumi Mentawai 25

Oktober 2010 dengan Metode inversi W-phase.

2.

Penentuan parameter sumber seismik dan parameter patahan serta

Deformasi dasar laut sebagai input awal simulasi tsunami Mentawai.

3.

Penentuan waktu tiba gelombang tsunami di pantai dan ketinggiannya

berdasarkan simulasi yang dilakukan.

1.5. Sistematika Penulisan

Dalam penyusunan skripsi ini, sistematika yang penulis gunakan adalah :

Bab I Pendahuluan

berisi tentang latar belakang, tujuan, manfaat,

batasan masalah dan sistematika penulisan.

Bab II Tinjauan Pustaka

menjelaskan tentang teori mekanisme

gempabumi, jenis-jenis gempa bumi, gelombang gempabumi, skala

kekuatan gempa bumi, W-phase, Inversi W-phase, parameter patahan dan

deformasi dasar laut, serta simulasi tsunami.

Bab III Data dan Pengolahan Data

berisi tentang data yang digunakan

dan pengolahan data penelitian.


(20)

Bab IV Analisa dan Pembahasan

menjelaskan tentang

Retrieving

W-phase, Inversi

W-phase, Parameter patahan dan deformasi dasar laut,

simulasi waktu tiba dan tinggi gelombang tsunami.

Bab V Penutup

memberikan kesimpulan dan saran berdasarkan hasil

penelitian.


(21)

BAB II

TINJAUAN PUSTAKA

2.1 Gempa bumi

Dalam teori patahan (fracture theory) disebutkan bahwa akibat patahan yang terjadi dengan tiba-tiba pada saat terjadi gempabumi akan dilepaskan sejumlah energi tertentu. Energi yang dipancarkan tersebut berupa gelombang seismik yang dapat dirasakan oleh seismograf (Reid,1911) yang disebut gempabumi. (Darwin harahap,1999, Pendahuluan Geofisika). Dari keterangan di atas dapat dikatakan bahwa gempa bumi merupakan hasil pelepasan energi dari suatu patahan pada kerak bumi yang terjadi secara tiba-tiba. Patahan tersebut bukan merupakan suatu titik, tetapi dapat berupa zona dengan bentangan (jarak) hingga beberapa kilometer.

Proses terjadinya gempa bumi dapat dilihat pada gambar 2.1.

(a) (b) (c)

Gambar 2.1. Skematik proses gempa bumi

Garis tebal vertikal menunjukkan patahan atau fault pada bagian bumi yang padat. Gambar-gambar di atas diterangkan sebagai berikut :

A

B

A

B

A


(22)

Gambar (a) : pada keadaan ini menunjukkan bahwa suatu lapisan yang belum terjadi perubahan-perubahan bentuk struktur bumi.

Gambar (b) : pada keadaan ini menunjukkan bahwa suatu lapisan batuan telah mendapat dan mengandung tegangan (stress), dimana telah terjadi perubahan bentuk struktur batuan. Untuk daerah A mendapat tegangan ke atas, sedang daerah B mendapat tegangan ke bawah. Proses ini berjalan terus hingga tegangan yang terjadi di daerah ini cukup besar untuk merubahnya menjadi gesekan antara daerah A dan daerah B. Dalam kurun waktu yang cukup lama, lapisan batuan tidak akan mampu lagi untuk menahan tegangan, sehingga terjadi suatu pergerakan atau perpindahan yang tiba-tiba dari kedua blok tersebut. Pada saat itulah terjadi patahan/sesar sambil dipancarkan sejumlah energi yang berupa gelombang seismik yang biasa disebut gempa bumi.

Gambar (c) : pada keadaan inilah menunjukkan bahwa suatu lapisan batuan yang sudah patah, karena adanya pergerakan yang tiba-tiba dari batuan.

Gerakan perlahan-lahan di daerah sesar (fault) ini berjalan terus, dimana seluruh proses di atas berulang kembali dan sebuah gempa baru timbul lagi di daerah tersebut setelah beberapa waktu. Demikianlah proses itu berlangsung secara terus-menerus.(Reid,1906). Teori ini dikenal sebagai Elastic Rebound Theory. (Gunawan Ibrahim & Subardjo,2003, Pengetahuan Geofisika). Dari penjelasan tersebut, maka syarat-syarat terjadinya gempa bumi antara lain gerakan relatif kerak bumi, pembangunan


(23)

2.2 Jenis-Jenis Gempa Bumi

Berdasarkan penyebabnya, gempa bumi dapat dibedakan menjadi :

a. Gempa bumi tektonik

Gempabumi ini disebabkan oleh adanya aktivitas tektonik, yaitu pergeseran lempeng lempeng tektonik secara mendadak yang mempunyai kekuatan dari yang sangat kecil hingga yang sangat besar. Gempabumi ini banyak menimbulkan kerusakan atau bencana alam di bumi, getaran gempa bumi yang kuat mampu menjalar keseluruh bagian bumi

b. Gempa bumi vulkanik

Gempa bumi ini terjadi akibat adanya aktivitas magma, yang biasa terjadi

sebelum gunung api meletus. Apabila keaktifannya semakin tinggi maka akan

menyebabkan timbulnya ledakan yang juga akan menimbulkan terjadinya

gempabumi. Gempabumi tersebut hanya terasa di sekitar gunung api tersebut.

c. Gempa bumi runtuhan

Gempabumi ini biasanya disebabkan oleh pergerakan permukaan tanah (longsor), gua runtuh, dan lain sebagainya yang menimbulkan getaran-getaran. Biasanya terjadi pada daerah kapur ataupun pada daerah pertambangan, gempabumi ini jarang terjadi dan bersifat lokal.


(24)

Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas dari manusia, seperti peledakan dinamit, nuklir atau palu yang dipukulkan ke permukaan bumi.

Berdasarkan kekuatannya atau magnitude (M) (Hagiwara,1964), gempabumi dapat dibedakan atas :

a. Gempabumi sangat besar (great earthquake) M > 8,0 SR b. Gempabumi besar (major earthquake) 7,0 < M ≤ 8,0 SR

c. Gempabumi sedang (moderate earthquake) 5,0 < M ≤ 7,0 SR

d. Gempabumi kecil (small earthquake) 3,0 < M ≤ 5,0 SR

e. Gempabumi mikro (micro earthquake) 1,0 < M ≤ 3,0 SR

f. Gempabumi ultra mikro (ultramicro earthquake) M ≤ 1,0 SR

Berdasarkan kedalaman sumber (h), gempabumi digolongkan atas :

a.

Gempabumi dalam (deep earthquake)

h > 300 Km

b.

Gempabumi menengah (intermediate earthquake) 80 < h < 300 Km

c.

Gempabumi dangkal (Shallow earthquake)

h < 80 Km

Berdasarkan tipenya, Mogi membedakan gempabumi atas:

a. TypeI :

Pada tipe ini gempa bumi utama diikuti gempa susulan tanpa

didahului oleh gempa pendahuluan (fore shock).

b. Type II :

Sebelum terjadi gempa bumi utama, diawali dengan adanya gempa

pendahuluan dan selanjutnya diikuti oleh gempa susulan yang cukup


(25)

banyak.

c. Type III:

Tidak terdapat gempa bumi utama. Magnitude dan jumlah

gempabumi yang terjadi besar pada periode awal dan berkurang

pada periode akhir dan biasanya dapat berlangsung cukup lama dan

bisa mencapai 3 bulan. Tipe gempa ini disebut tipe

swarm dan

biasanya terjadi pada daerah vulkanik seperti gempa gunung Lawu

pada tahun 1979.

Perbedaan klasifikasi atau pengelompokan gempa bumi diatas disebabkan oleh kerak bumi (crust), distribusi kedalaman sumber gempa dan kepentingan dalam kerekayasaan.

2.3. Gelombang Gempa Bumi

Gelombang seismik adalah gelombang elastik yang menjalar ke seluruh

bagian dalam bumi dan melalui permukaan bumi, akibat adanya lapisan batuan

yang patah secara tiba

tiba atau adanya suatu ledakan. Gelombang utama gempa

bumi terdiri dari dua tipe yaitu gelombang bodi

(Body Wave) dan gelombang

permukaan (Surface Waves).

2.3.1. Gelombang Bodi

(Body Waves)

Gelombang body merupakan gelombang yang menjalar melalui

bagian dalam bumi dan biasa disebut

free wave karena dapat menjalar ke

segala arah di dalam bumi. Gelombang bodi terdiri atas :


(26)

Gelombang primer merupakan gelombang longitudinal atau

gelombang kompresional, gerakan partikelnya sejajar dengan arah

perambatannya. Gelombang kompresional disebut gelombang

primer (P) karena kecepatannya paling tinggi diantara gelombang

yang lain dan tiba pertama kali.

2.

Gelombang sekunder.

Gelombang sekunder merupakan gelombang transversal atau

gelombang

shear, gerakan partikelnya terletak pada suatu bidang

yang tegak lurus dengan arah penjalarannya. Gelombang

shear

disebut gelombang sekunder (S) karena tiba yang kedua setelah

gelombang P. Gelombang sekunder terdiri dari dua komponen,

yaitu gelombang SH dengan gerakan partikel horizontal dan

gelombang SV dengan gerakan partikel vertikal.


(27)

Gambar 2.2. arah penjalaran gelombang P dan S

2.3.2. Gelombang Permukaan

(Surface Waves)

Gelombang permukaan merupakan gelombang elastik yang menjalar sepanjang permukaan bumi dan biasa disebut sebagai tide waves. Karena gelombang ini terikat harus menjalar melalui suatu lapisan atau permukaan. Gelombang permukaan terdiri dari:

1. Gelombang Love (L) dan gelombang Rayleigh (R), yang menjalar melalui permukaan bebas dari bumi. Gelombang L gerakan partikelnya sama dengan gelombang SH dan memerlukan media yang berlapis. Gelombang R lintasan gerak partikelnya merupakan suatu ellips. Bidang ellips ini vertikal dan berimpit dengan arah penjalarannya. Gerakan partikelnya ke belakang (bawah maju atas mundur). Gelombang R menjalar melalui permukaan media yang homogen.


(28)

2. Gelombang Stonely, arah penjalarannya seperti gelombang R tetapi menjalar melalui batas antara dua lapisan di dalam bumi.

3. Gelombang Channel, yaitu gelombang yang menjalar melalui lapisan yang berkecepatan rendah (low velocity layer) di dalam bumi.

Gelombang Love dan Rayleigh ada juga yang memberi simbul LQ dan LR dimana L singkatan dari Long karena gelombang permukaan mempunyai sifat periode panjang dan Q adalah singkatan dari Querwellen yaitu nama lain dari

Love, seorang Jerman yang menemukan gelombang ini.


(29)

Gambar 2.4. seismogram gempa bumi

2.4. Skala Kekuatan Gempa Bumi

Ukuran kekuatan gempabumi yang merupakan gambaran besarnya energi

pada sumber gempabumi yang terlepas saat gempabumi terjadi dan merupakan

hasil pengamatan Seismograf disebut dengan nama

Magnitude. Magnitude

menggunakan skala Richter (SR). Ada beberapa magnitude yang digunakan pada

saat ini diantaranya :

2.4.1. Magnitude Lokal (ML)

Magnitude lokal (ML) pertama kali diperkenalkan oleh Richter di awal tahun 1930-an dengan menggunakan data kejadian gempabumi di daerah California yang direkam oleh Seismograf Woods-Anderson. Menurutnya dengan mengetahui jarak episenter ke seismograf dan mengukur amplitude maksimum dari sinyal yang tercatat di seismograf maka dapat dilakukan pendekatan untuk mengetahui besarnya gempabumi yang terjadi. (USGS, 2002)


(30)

ML = log a + 3 log - 2.92

Dengan a = amplitude getaran tanah ( m), = jarak Stasiun pencatat ke sumber gempabumi (km) dengan 600 km.

Saat ini penggunaan ML sangat jarang karena pemakaian

seismograf Woods-Anderson yang tidak umum. Selain itu penggunaan

kejadian gempabumi yang terbatas pada wilayah California dalam

menurunkan persamaan empiris membuat jenis magnitude ini paling tepat

digunakan hanya untuk daerah tersebut. Oleh karena itu dikembangkan

jenis magnitude yang lebih tepat untuk penggunaan yang lebih luas dan

umum.

2.4.2. Magnitude Bodi (mb)

Terbatasnya penggunaan magnitude lokal untuk jarak tertentu membuat dikembangkannya tipe magnitude yang bisa digunakan secara luas. Salah satunya adalah mb atau magnitude bodi (Body-Wave Magnitude). Magnitude ini didefinisikan berdasarkan catatan amplitude dari gelombang P yang menjalar melalui bagian dalam bumi (Lay. T and Wallace.T.C. 1995). Secara umum dirumuskan dengan persamaan :

mb = log ( a / T ) + Q ( h,

Dengan a = amplitudo getaran ( m), T = periode getaran (detik) dan Q (h, ) = koreksi jarak dan kedalaman h yang didapatkan dari pendekatan


(31)

2.4.3. Magnitude Permukaan (Ms)

Selain Magnitude bodi dikembangkan pula Ms atau Magnitude permukaan (Surface-wave Magnitude). Magnitude tipe ini didapatkan sebagai hasil pengukuran terhadap gelombang permukaan (surface waves). Untuk jarak 600 km seismogram periode panjang (long-period seismogram) dari gempabumi dangkal didominasi oleh gelombang permukaan. Gelombang ini biasanya mempunyai periode sekitar 20 detik. Amplitude gelombang permukaan sangat tergantung pada jarak dan kedalaman sumber gempa h. Gempabumi dalam tidak menghasilkan gelombang permukaan, karena itu persamaan Ms tidak memerlukan koreksi kedalaman. Magnitude permukaan mempunyai bentuk rumus sbb:

Ms = log a + log +

Dengan a = amplitude maksimum dari pergeseran tanah horisontal pada

periode 20 detik, = Jarak (km), dan adalah koefisien dan konstanta

yang didapatkan dengan pendekatan empiris. Persamaan ini digunakan

hanya untuk gempa dengan kedalaman sekitar 60 km.

Hubungan antara Ms dan mb dapat dinyatakan dalam persamaan :

mb = 2.5 + 0.63 Ms


(32)

2.4.4. Magnitude Momen (Mw)

Kekuatan gempabumi sangat berkaitan dengan energi yang

dilepaskan oleh sumbernya. Pelepasan energi ini berbentuk gelombang

yang menjalar ke permukaan dan bagian dalam bumi. Dalam

penjalarannya energi ini mengalami pelemahan karena

absorbsi dari

batuan yang dilaluinya, sehingga energi yang sampai ke stasiun pencatat

kurang dapat menggambarkan energi gempabumi di hiposenter.

Berdasarkan Teori

Elastik Rebound diperkenalkan istilah momen

seismik

(seismic moment). Momen seismik dapat diestimasi dari dimensi

pergeseran bidang sesar atau dari analisis karakteristik gelombang

gempabumi yang direkam di stasiun pencatat, khususnya dengan

seismograf periode bebas (broadband seismograph).

Mo = µ D A

Dengan Mo = momen seismik, µ = rigiditas, D = pergeseran rata-rata

bidang sesar, A = area sesar.

Secara empiris hubungan antara momen seismik dan magnitude

permukaan dapat dirumuskan sebagai berikut:

log Mo = 1.5 Ms + 16.1


(33)

Kanamori (1997) dan Lay. T and Wallace. T. C, (1995)

memperkenalkan Magnitude momen (moment magnitude) yaitu suatu tipe

magnitude yang berkaitan dengan momen seismik namun tidak bergantung

dari besarnya magnitude permukaan :

Mw = ( log Mo / 1.5 )

10.73

Dengan Mw = magnitude momen, Mo = momen seismik.

Meskipun dapat menyatakan jumlah energi yang dilepaskan di

sumber gempabumi dengan lebih akurat, namun pengukuran magnitude

momen lebih komplek dibandingkan pengukuran magnitude ML, Ms dan

mb. (Gunawan Ibrahim dan Subardjo, 2003, Pengetahuan Seismologi)

2.4.5. Magnitude Durasi (Md)

Magnitude Durasi

(Duration Magnitude) merupakan fungsi dari

total durasi (lama waktu / panjang) sinyal gempa bumi yang terekam oleh

seismograf. Magnitude Durasi (Md) untuk suatu stasiun pengamat

persamaannya adalah :

Md = a

1

+ a

2

log + a

3

+ a

4

h

Dengan Md = magnitude durasi, = durasi sinyal (detik), = jarak

episenter (km), h = kedalaman hiposenter (km) dan a

1

,a

2

,a

3

, dan a

4

adalah

konstante empiris.


(34)

Magnitude durasi sangat berguna dalam kasus sinyal yang sangat

besar amplitudenya

(off-scale) yang mengaburkan jangkauan dinamis

sistem pencatat sehingga memungkinkan terjadinya kesalahan pembacaan

apabila dilakukan estimasi menggunakan Ml. (Massinon. B, 1986).

2.5.

W-Phase

W-phase adalah sebuah fase gelombang long periode dengan waktu tiba

antara fase gelombang P dan fase gelombang S (tiba setelah gelombang P,

sebelum gelombang S).

W-phase memberikan informasi-informasi

Long periode

dari sumber, yang lebih cepat daripada gelombang surface

(surface wave).

Fase

ini pertamakali teridentifikasi pada

record seismogram gempa bumi dan tsunami

Nicaragua tahun 1992 dan oleh karena perbedaan gelombang tersebut, maka

diberikan nama

W-phase).( Hiroo Kanamori and Luis Rivera, 2008,

Source

Inversion of W phase: Speeding up Seismic Tsunami Warning)

W-phase

dapat diinterpretasikan sebagai superposisi dari energi long

periode terkait juga dengan beberapa fase gelombang, seperti gelombang P, PP,

SP, dan S dengan kecepatan group antara 4,5 km/s sampai 9,0 km/s, dengan

periode berkisar antara 100 s hingga 1000 s. Pada periode ini, dari 100-1000 s,

pelepasan energi yang sangat signifikan tetap berada pada lapisan mantel, dimana

variasi struktur secara lateral relatif kecil. Keadaan ini mengakibatkan propagasi

dari W-phase tidak terlalu terpengaruh oleh tingkat heterogenitas yang tinggi pada

struktur lapisan dangkal yang diakibatkan oleh perbedaan lempeng benua dan


(35)

samudera (Kanamori,1993, Aplication of the W-phase Source Inversion Method to

Regional Tsunami Warnaing).

Untuk sebuah sumber moment tensor, dapat dihitung

displacement pada

suatu lokasi

r

sebagai sebuah fungsi waktu t, ditunjukkan dengan persamaan :

n m

l lm

n m l n m l n m l n m l n m l n m l n

c

t

Q

t

r

y

M

t

r

u

r

, , 2 0

cos

2

/

exp

1

:

,

(1)

Dimana n

y

lm

r

:

normal mode

M : source moment tensor

:

0

r

m l

n strain tensor

:

m l

nQ quality factor

:

m l

n

C

energi

dengan

C

y

r

y

r

dV

m l n m l n V m l

n

.

(2)

Dimana : densitas batuan, integrasi terhadap volume bumi V. (Kanamori dan Rivera,2008,Source Inversion of W phase: Speeding up Seismic Tsunami Warning).

Kisaran kecepatan group W-phase dari 4,5 km/s – 9,0 km/s , mengakibatkan energi W-phase tiba dalam interval waktu yang sangat singkat setelah waktu tiba


(36)

gelombang P. Untuk mengekstrak W-phase, digunakan proses deconvolusi time window

dari W-phase dengan durasi dari 15 ∆s (∆ dalam derajat) setelah gelombang P yang berisi sebagian besar energi W-phase.

2.6. Inversi W-Phase

Proses inversi W-phase, mengikuti prosedur sebagaimana yang dilakukan oleh Kanamori dan Rivera (2008). Dalam proses inversi, diasumsikan sebagai inversi sebuah bagian titik sumber (spatial point source), sama seperti yang dilakukan oleh Harvard University dan Global Centroid Moment Tensor (GCMT).(Dziewonski dkk.1981; Ekstrom dkk 2005). Posisi/lokasi titik sumber tersebut dinamakan lokasi centroid

(centroid location). Titik sumber ini berubah-ubah terhadap waktu dengan diberikannya sebuah timehistory. Jika lokasicentroid dan time history sumber diketahui, inversi yang dilakukan merupakan inversi linier dengan element moment tensor Mij, yang

diformulasikan sebagai :

3 , 2 3 , 1 2 , 1 3 , 3 2 , 2 1 , 1 3 , 2 5 3 , 1 5 2 , 1 5 3 , 3 5 2 , 2 5 1 , 1 5 3 , 2 4 3 , 1 4 2 , 1 4 3 , 3 4 2 , 2 4 1 , 1 4 3 , 2 3 3 , 1 3 2 , 1 3 3 , 3 3 2 , 2 3 1 , 1 3 3 , 2 2 3 , 1 2 2 , 1 2 3 , 3 2 2 , 2 2 1 , 1 2 3 , 2 1 3 , 1 1 2 , 1 1 3 , 3 1 2 , 2 1 1 , 1 1 wN wN wN wN wN wN w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

23 13 12 33 22 11

M

M

M

M

M

M

= wN w w w w w

u

u

u

u

u

u

5 4 3 2 1 (3)


(37)

Dimana

M

kl

:

element k-l moment tensor sumber.

:

,

t

u

wikl displacement pada stasion i

:

t

u

wi W-phase pada stasion i

Vektor kolom sisi kanan merupakan gabungan W-phase hasil observasi (seismogram), dan vektor kolom sisi kiri merupakan gabungan sintetik displacement

sebuah unit sumber yang dihitung dengan salah satu dari enam element dasar moment tensor.

Seperti yang telah dijelaskan di atas, diasumsikan bahwa lokasi centroid dan fungsi source time telah diketahui. Dalam penelitian ini digunakan cara yang telah dilakukan oleh Harvard Centroid Moment Tensor, dengan menggunakan fungsi sumber

triangular, dimana digambarkan dengan dua buah parameter, yaitu half duration, th, dan

centroid delay, td. Half duration adalah setengah lebar segitiga moment rate function dan

centroid delay adalah posisi sementara lokasi episenter di pusat segitiga yang diukur dari

origin time perkiraan. (Tri Handayani, 2009, W Phase Analysis for Tsunami Warning).

2.7. Simulasi Tsunami

Dalam penelitian ini, sebagai media simulasi digunakan program simulasi tsunami TUNAMI-N2 sebagai sumber model numerik tsunami. TUNAMI-N2 merupakan kependekan dari Tohoku University’s Numerical Analysis Model for Investigation of

Near-field tsunami No 2. Program simulasi ini merupakan metode analisa secara numerik untuk meneliti tsunami near field berdasarkan pada simulasi tsunami secara numerik


(38)

dengan menggunakan leap-frog scheme. Program ini dibuat oleh Dr. Fumihiko Imamura dkk di DCRC (The Disaster Control Research Center), Universitas Tohoku. Interval grid yang digunakan dalam tsimulasi ini digunakan interval 1arc.menit atau sama dengan 111 km/60 = 1850 m, percepatan gravitasi (g) 9,8 2

s

m , kedalaman bathymetry maksimum

(hmaks) 7.308 meter. Kondisi kestabilan interval grid secara temporal dituliskan dengan

mengikuti :

maks

gh

x

t

2

(4)

Pengaturan waktu interval temporal (∆t) sebesar 3 detik, dimana nilai ini lebih

rendah dari kondisi kestabilan. Interval temporal ini digunakan untuk membatasi sampling waktu gelombang (waveform) dan waktu snapshot file film tsunami.

Dalam komputasi numerik, distribusi kecepatan gelombang tsunami digambarkan oleh bathymetri (Satake, IISEE Lecture Note 2009). Program TUNAMI-N2 menggunakan bathymetri wilayah sebagai data masukan (input data). Dalam skripsi ini digunakan data bathymetri dari GEBCO (General Bathymetric Chart of Ocean) yang telah didigitasi dari peta lautan (nautical charts) dengan interval grid satu menit.

2.8. Parameter patahan dan deformasi dasar laut

Untuk simulasi tsunami, dibutuhkan hasil penghitungan parameter patahan dan deformasi dasar laut sebagai kondisi awal. Parameter sumber yang diperlukan dan perlu dihitung :


(39)

Panjang patahan (L) Lebar patahan (W) sudut strike ( ) sudut dip(δ)

sudut rake(λ) slip amount (u)

Dalam penelitian ini, digunakan parameter patahan berdasarkan hasil dari inversi

W-phase. Dari inversi W-phase didapatkan lokasi centroid (lintang, bujur, kedalaman), yang diasumsikan terletak di pusat patahan (bintang merah dalam gambar 2.5).

Setelah ditentukan lokasi centroid-nya, geser lokasi centroid dari pusat ke pojok kiri untuk menentukan lokasi koordinat dari patahan (bintang biru dalam gambar 2.5) sebagai parameter input TUNAMI-N2.


(40)

Dari inversi W-phase, didapatkan parameter sumber sebagai hasil dari proses inversi, yaitu strike ( ), dip (δ), rake (λ) dan seismic moment (M0). Dengan penghitungan menggunakan pendekatan empiris (Geller, 1979), sehingga didapatkan panjang (L) dan lebar patahan (W).

W L L x

M0 (7,26 1021) 3; 2 (5)

Dimana M0 = moment seismic (dyne centimeter)

L = panjang patahan (km)

W = lebar patahan (km)

Slip amount (u) dihitung dengan :

0

M x u x L x W (6)

Dengan ridigity ,

3

.

0

x

10

10

N

/

m

2 (gempa bumi dangkal)

Parameter-parameter patahan di atas, dapat dihitung dengan mudah menggunakan


(41)

BAB III

METODE PENELITIAN

3.1. Data Penelitian

Dalam penelitian ini, digunakan data rekaman broadband seismograf dari jaringan seismik global. Data ini didownload dari database IRIS (Incorporated Research Institution for Seismology) Data Management System (DMS) dari website :

http:www.iris.washington.edu/dms/wilber.htm.Gambar 3.1 menunjukkan lokasi stasiun seismik global yang digunakan dalam penelitian skripsi ini.


(42)

Data yang digunakan adalah 1 sample-per-second rekaman komponen vertikal (chanel LHZ) untuk jarak stasiun sekitar <

90

0di ambil dari database dalam jaringan/network tersebut yaitu II (IRIS/IDA), IU(IRIS/USGS), GE (GEOPHONE), G (GEOSCOPE). Contoh seismogram gempa bumi Mentawai 25 oktober 2010, dapat dilihat pada gambar 3.2. Sumbu y adalah kecepatan (m/s) dan sumbu x menunjukkan waktu (s).

Gambar 3.2. contoh seismogram velocity record (m/sec) gempa Mentawai

3.2. Metode Penelitian

Data seismogram hasil download dari database IRIS-DMC dalam format

MiniSeed, yang mana merupakan raw-data asli dari rekaman broadband seismograf long periode komponen vertikal. Dalam format ini, data harus di convert dengan Rdseed


(43)

Linux. Setelah terconvert seluruh data , dilakukan proses deconvolusi data. Data seismogram hasil download merupakan gabungan dari parameter sumber seismik, struktur bagian dalam bumi dan impuls instrument respons seismometer. Proses deconvolusi ini berguna untuk memisahkan seismogram dari faktor instrument respons, sehingga data akhir yang dihasilkan, diharapkan adalah data murni dari sumber seismik. Dari data murni ini, kemudian dilakukan retrieve W-phase dan inversi W-phase.

Sebelum proses retrieve dilakukan, sebagai catatan bahwa data sinyal gempa merupakan catatan sinyal velocity dalam bentuk time series. Sedangkan retrieve W-phase dilakukan pada catatan sinyal displacement dalam time domain. Proses mengubah sinyal

velocity time series kedalam displacement time domain ini cukup rumit. Sebelumnya, sinyal catatan velocity dilakukan integrasi didapatkan displacement time series. Digunakan time deconvolusi sehingga didapatkan accelerasion/percepatan time series. Kemudian accelerasi time series dilakukan band pass filtering dalam time domain dilanjutkan dengan dua kali integrasi, akhirnya didapatkan displacement dalam time domain. Selanjutnya dilakukan retrieve dan inversi W-phase. Proses inversi dilakukan dengan convolusi Green function dengan data observasi. Proses ini secara sederhana adalah mencari RMS terkecil hasil matching antara sinyal observasi di stasiun pencatat dengan sintetis waveform (Green’s function). Hasil inversi ini menghasilkan moment tensor, besar magnitude serta focal mechanism. Secara singkat diagram alir penelitian dapat dijelaskan sebagai berikut :


(44)

Dalam penelitian ini, digunakan 1 sample-per-second data rekaman seismograf komponen vertikal (komponen LHZ) yang diambil dari database IRIS, dengan durasi 15∆

No

Yes DATA (seed)

Extract to SAC

Deconvolusi

Retrieve W-phase

Green’s function

Out put:

Seismic moment, Magnitude moment (Mw), focal mechanism

Inversi Filtering RMS (3.0,

1.3, 0.9)

END START

Parameter patahan & deformasi dasar latut

Simulasi Tsunami

Waktu tiba dan tinggi gelombang tsunami


(45)

radius ∆ ≤ 0

90

dari pusat gempa dengan diberikan bandpass filter dari 0,001 - 0,005 Hz (dari 200s-1000s). Kemudian dihitung sebuah unit sumber sintetis untuk setiap stasiun menggunakan Green’s function. Kanamori dan Rivera (2008) telah membuat database

Green’s function ini untuk tiga komponen displacement untuk jarak

0

0

90

0, dengan interval dari 0,10 0,20 dan kedalaman antara 0-760 km. Interval kedalaman bervariasi seiring meningkatnya kedalaman dari 2 km hingga 10 km. Database Green function yang telah di buat Kanamori dan Rivera untuk spheriodal mode sebanyak 103.000, toroidal mode sebanyak 63.000, dan radial mode sebanyal 152, lengkap untuk periode 12 s. (Kanamori and Rivera, 2008, Source Inversion of W phase: Speeding up Seismic Tsunami Warning,Geophysics J. Intl)

Gambar 3.3 menunjukkan contoh hasil retrieve Wphase setelah inversi untuk tiap stasiun. Tanda bintang merah dalam lingkaran (gambar sebelah kiri) adalah lokasi gempa bumi, dan titik merah dalam lingkaran adalah stasiun. Titik merah pada waveform (gambar sebelah kanan) merupakan W-phase yang diambil dari stasiun tersebut.


(46)

Gambar 3.3. W-phase gempa bumi Mentawai 25 oktober 2010

Dari hasil inversi W-phase, kemudian dilanjutkan persiapan untuk membuat simulasi tsunami dengan program TUNAMI-N2. Data seismic moment hasil inversi digunakan untuk menghitung parameter patahan dan deformasi dasar laut berupa slip, dip, rake, panjang patahan, lebar patahan, sebagai masukan awal simulasi tsunami.

Persiapan selanjutnya setelah didapatkan hasil parameter patahan dan juga deformasi dasar laut, selanjutnya membuat model patahan akibat gempa bumi dalam program TUNAMI-N2. Selain itu, untuk mendapatkan hasil rekaman tinggi gelombang dan juga waktu tibanya, kita tempatkan tide gauge model pada titik-titik di dekat pantai sebagai titik pencatat tinggi gelombang tsunami. Dalam penelitian ini, ditempatkan 8 titik


(47)

tide gauge yang tersebar di berbagai pulau. Letak 8 tide gauge tersebut dapat dilihat dalam gambar 3.4.


(48)

BAB IV

ANALISIS DAN PEMBAHASAN

Gempabumi Mentawai tercatat hampir di seluruh seismograf broadband, jaringan seismik global. Akan tetapi dalam peenelitian ini hanya terbatas hingga

90

0. Hal ini dikarenakan sifat dari getaran itu sendiri, waveform (gelombang) yang tercatat pada seismograf dengan jarak >

70

0 merupakan gelombang very long-periode, berupa gelombang Rayleigh, yaitu salah satu gelombang permukaan (Kanamori,1993).

Dari batas radius yang telah di tentukan (≤ 90°) didapatkan sejumah 60 catatan gelombang/waveform dari jaringan stasiun global dalam lingkup <

90

0. Sebanyak 60 stasiun tersebut, tersebar di beberapa negara. Setelah dilakukan proses deconvolusi dan

inversi, hanya sebanyak 30 stasiun saja yang dapat digunakan dalam penelitian ini. Selebihnya, yaitu 30 stasiun yang lain dihilangkan. Pemilihan stasiun ini, berdasarkan nilai RMS terkecil dari hasil matching data observasi dengan database sintetik Green function yang telah di buat oleh Kanamori dan Rivera (2008). Hasil matching data tersebut ditunjukkan dalam gambar 4.1.

Dari 30 stasion tersebut,selanjutnya dilakukan retrieve W-phase dengan proses inversi. Parameter awal yang digunakan sebagai acuan titik centroid adalah data parameter gempabumi hasil lokalisasi BMKG dengan SeiscomP3, dan time delay(td)

serta half duration th diambil dari data awal GCMT, yang bisa dilihat dalam GCMT


(49)

Gambar 4.1. matching W-phase observasi (warna hitam)

dan sintetis (warna merah)

Tabel 4.1. parameter centroid sebagai input inversi W-phase

Litang (derajat)

Bujur (derajat)

Depth (km)

Time delay td

(s)

Half dur th

(s)

Inversi W-phase -3,61 99,93 10 38,0 19,9

Hasil inversi berupa magnitudo moment dan juga parameter focal, dapat dilihat dalam table 4.2. dan gambar 4.2. Dari gambar 4.2 bisa dilihat bahwa jenis patahan yang terjadi akibat gempa Mentawai merupakan patahan naik (Thrust/reverse fault) dengan arah barat laut – tenggara. Secara jelas jika dilihat dari jenis patahan, bahwa patahan yang diakibatkan gempabumi mentawai memenuhi syarat sebagai penggerak tsunami yaitu jenis patahan normal/turun ataupun reverse/naik.


(50)

Tabel 4.2. parameter focal dan Mw yang dihitung dengan inversi untuk gempa Mentawai 25 oktober 2010

Inversi Nodal plane-1 (strike/dip/rake)

Nodal plane-2 (Strike/dip/rake)

Mw

W-phase 317,5 / 4,6 / 91,8 135,6 / 85,4 / 89,9 7,89 GCMT 319,0 / 7,0 / 98,0 131,0 / 83,0 / 89,0 7,80

Inversi W-phase GCMT

Gambar 4.2. focal mechanism hasil Inversi dan GCMT

Gambar dalam lampiran 1 menunjukkan perbandingan antara waveform hasil observasi dengan waveform sintetis untuk seluruh stasiun yang digunakan dalam penelitian. Warna merah adalah waveform sintetis dan warna hitam adalah waveform

hasil observasi. Tanda titik merah menunjukkan W-phase yang digunakan untuk menentukan inversi.

Nilai moment seismic M0 dari gempa Mentawai dihasilkan sebesar 8,7 x 27


(51)

moment seismic ini menghasilkan magnitude moment (Mw) yang tidak jauh berbeda antara keduanya sebagaimana terlihat dalam tabel 4.2 di atas yaitu Mw 7,89 SR untuk

inversi W-phase , dan Mw 7,80 SR dalam katalog hasil analisa GCMT.

Dengan melihat dari proses penentuan Mw, dimana Mw (GCMT) menggunakan surface wave (gelombang permukaan, periode 50-150 sec) sebagai acuan penentuannya, dimana gelombang ini tiba sekitar 25-30 menit setelah waktu kejadian gempa (origin time). Sedangkan Mw (W-phase) ditentukan dengan menggunakan W phase yang merupakan gelombang very long periode (200-1000 sec), dengan waktu tiba sekitar 20 menit setelah waktu kejadian gempa. Dengan hasil yang relatif sama, akan tetapi kecepatan penentuan magnitude moment dengan W phase lebih cepat dibanding penentuan yang dilakukan oleh GCMT.

Untuk simulasi tsunami, dilakukan penghitungan parameter patahan dan juga deformasi dasar laut berdasarkan persamaan 5 (Geller,1979). Dengan menggunakan

microsoft exel sederhana, didapatkan hasil dari perhitungan tersebut yang tercantum dalam table 4.3.

Tabel 4.3. hasil penghitungan parameter patahan dan deformasi dasar laut

Panjang (km)

Lebar (km)

Strike (0)

Dip (0)

Rake (0)

Slip (m)

Lintang (0)

Bujur (0)

Depth (km)

inversi 106,217 53,11 317,5 4,6 91,8 5,14 -3,61 99,93 10

Hasil penghitungan parameter patahan dan deformasi dasar laut inilah yang digunakan sebagai input untuk pemodelan patahan gempa bumi Mentawai 25 Oktober 2010. Hasil pemodelan patahan dan deformasi dasar laut bisa dilihat pada gambar 4.3.


(52)

Gambar 4.3. pemodelan patahan gempabumi Mentawai 25 oktober 2010

Untuk hasil pemodelan tsunami dengan aplikasi TUNAMI-N2 yang telah dijalankan, didapatkan perkiraan waktu tiba gelombang dan tinggi gelombang di titik-titik yang dianggap sebagai tide gauge (gambar 3.4). Pemodelan tsunami yang telah dijalankan menghasilkan grafik tinggi gelombang terhadap waktu, terlihat dalam gambar 4.6. Untuk lebih jelasnya, gambaran waktu tiba gelombang dan tinggi gelombang tsunami dapat dilihat dalam gambar 4.4 dan gambar 4.5.


(53)

10 11

16 26

35

48

66 70

0 20 40 60 80

Sibaru-baru Sibigau Pagai utara Sipora Enggano Teluk Dalam Seblat Padang

Wa k t u T iba G e lo m ba ng T s una m i ( m e nit )

Gambar 4.4. Grafik Waktu tiba Gelombang Tsunami di titik observasi


(54)

Gambar 4.6. Grafik Tinggi Gelombang terhadap Waktu

Dari grafik terlihat bahwa waktu tiba gelombang tsunami yang paling cepat di daerah Sibaru-baru, yaitu sekitar 10 menit setelah gempa bumi, dan daerah yang terakhir terkena efek gelombang tsunami yaitu daerah Padang sekitar 70 menit setelah gempa bumi. Hal ini karena Sibaru-baru adalah wilayah terdekat dengan sumber gempa bumi, dan Padang berada di balik pulau, sehingga pergerakan air laut terpecah dan tertahan oleh pulau.

Untuk tide gauge sebenarnya yang dapat di akses datanya, hanyalah stasiun Padang, sehingga hasil simulasi yang didapatkan dibandingkan dengan catatan sebenarnya saat terjadi tsunami. Dalam penelitian ini, digunakan catatan tide gauge WMO (World Meteorogical Organisation) yang terpasang di Padang. Hasil record tsunami di Padang terlihat dalam gambar 4.7.


(55)

Gambar 4.7. hasil observasi tide gauge di pantai Padang

Dari hasil observasi lapangan yaitu catatan gelombang tsunami di tide gauge Padang, ternyata tinggi gelombang maksimum di pantai Padang setinggi 0,46 meter. Dan hasil simulasi tsunami yang didapatkan dalam penelitian ini, mendapatkan nilai maksimum untuk Padang sekitar 0,3 meter. Berbeda 0.1 meter, antara hasil observasi di lapangan dengan hasil simulasi.


(56)

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Sesuai dengan hasil analisis yang telah dilakukan, penulis mencoba untuk menyimpulkan hasil penelitian sebagai berikut :

1. Hasil reanalisis gempabumi Mentawai dengan menggunakan deconvolusi dan

inversi W-phase menghasilkan parameter gempa yang hampir sama dengan parameter gempabumi yang di release oleh Global CMT yaitu magnitude moment sebesar Mw = 7,8 SR untuk GCMT dan Mw = 7,89 SR untuk inversi W-phase. Metode inversi W-phase dapat digunakan untuk update peringatan tsunami yang telah di keluarkan BMKG, mengingat datangnya gelombang (W-phase)

lebih cepat daripada gelombang permukaan (surface wave).

2. Gempa Mentawai mengakibatkan patahan dan deformasi dasar laut sebesar: Panjang 106,217 kilometer, lebar 53,11 kilometer dan slip 5.14 meter dengan Strike 317,50, Dip 4,60, dan Rake

91

.

8

0.

3. Hasil simulasi tsunami dengan TUNAMI-N2 dapat diprediksi waktu datangnya gelombang tsunami menghantam pantai yaitu Sibaru-baru 10 menit setelah gempa, Sibigau 11 menit, Pagai Utara 16 menit, Sipora 26 menit, Enggano 35 menit, Teluk Dalam 48 menit, Seblat 66 menit, dan Padang 70 menit. Ketinggian gelombang maksimum masing-masing tide gauge terdiri dari Sibaru 1,2 meter, Sibigau 1,3 meter, Pagai Utara 1 meter, Sipora 0,6 meter, Enggano 0,15 meter, Teluk Dalam 0,06 meter, Seblat 1 meter, dan Padang 0,3 meter.


(57)

5.2. Saran

1. Untuk memperoleh hasil yang maksimal, perlu juga dilakukan penelitian untuk gempa-gempa yang lain, sehingga dapat diketahui ketepatan metode ini.

2. Agar menggunakan data bathymetry yang lebih lengkap untuk memperbaiki hasil simulasi tsunami.

3. Kepada BMKG, metode ini dapat dipertimbangkan untuk meng-update informasi peringatan dini tsunami yang diberikan kepada masyarakat.


(58)

DAFTAR PUSTAKA

Kanamori.H and Rivera.L, - , Aplication of the W-phase Source Inversion Method to Regional Tsunami Warnaing, Journal

Harahap. Darwin, 1999, Pendahuluan Geofisika, BPLMG, Jakarta

Borman.Peter, 2002, New Manual of Seismological Observatory Practice, GFZ,Germany

Ibrahim. Gunawan dan Subardjo, 2003, Pengetahuan Seismologi, BMG, Jakarta

Stein.Seth and Wysession. Michael, 2005, An Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, USA

Imamura.F, Cevdet Yalciner.A, Ozyurt.G, 2006, Tsunami Modelling Manual,

Kanamori.H and Rivera.L, 2008, Source Inversion of W phase: Speeding up Seismic Tsunami Warning, Geophys. J. Int

Handayani.Tri, 2009, W Phase Analysis for Tsunami Warning, Master Paper, Tsukuba-Japan


(59)

LAMPIRAN I


(60)

(61)

perbandingan waveform observasi (warna hitam) dan waveform sintetis (warna merah). Dua titik merah pada trace mengindikasikan akhir titik W-phase yang di inverse.


(62)

LAMPIRAN III


(63)

LAMPIRAN IV

PERBANDINGAN HASIL ANALISA DARI BERBAGAI INSTITUSI DUNIA

JMA : JEPANG EMSC : EROPA USGS : AMERIKA BMKG : INDONESIA JATWC : AUSTRALIA GFZ : JERMAN


(64)

LAMPIRAN V

HASIL ANALISA BMKG DENGAN SISTEM SEISCOMP3

LOKASI GEMPABUMI

Hari/ Tanggal : Senin, 25 Oktober 2010

Pukul : 21:42:20 WIB,

Lokasi : 3.61 LS – 99.93 BT, 30 km Barat Daya Pagai Selatan, Mentawai - Sumatera Barat.


(65)

(66)

LAMPIRAN II


(67)

(68)

(69)

(70)

LAMPIRAN VI


(1)

(2)

(3)

(4)

(5)

(6)