lvi b
1
= kemiringan permukaan regresi yang menyatakan koefisien regresi dari variabel X
1
i
b
2
= kemiringan permukaan regresi yang menyatakan koefisien regresi dari variabel X
2
i
b
3
= kemiringan permukaan regresi yang menyatakan koefisien regresi dari variabel X
3 i
b
4
= kemiringan permukaan regresi yang menyatakan koefisien regresi dari variabel X
4
i
b
5
= kemiringan permukaan regresi yang menyatakan koefisien regresi dari variabel X
5 i
X
1
= Bukti langsung
tangible
X
2
= Kehandalan
reliability
X
3
= Daya tanggap
responsiveness
X
4
= Jaminan
assurance
X
5
= Empatiperhatian
emphaty
i = 1, 2, 3, ... n ; n = 100 responden sampel
b. Analisis Gap
Gap Analysis merupakan pengujian yang bertujuan untuk mengetahui ada atau tidak perbedaan antara rata-rata kualitas pelayanan
yang diharapkan dengan rata-rata kualitas pelayanan yang dirasakan.
c. Uji F
Uji F simultan dilakukan untuk mengetahui variabel bebas X secara bersama-sama berpengaruh signifikan atau tidak terhadap variable
lvii terikat Y. dalam pengujian ini F
hitung
dibandingkan dengan F
tabel
pada derajat signifikan α = 5 dan keputusan yang diambil jika F
hitung
F
tabel
maka Ho diterima dan Ha ditolak. Untuk pengujian ini, maka dilakukan uji F dengan rumus:
1 1
2 2
- -
- =
k n
R k
R Fhitung
Keterangan: R= koefisien relasi berganda
K= jumlah variable independent N= jumlah sample
Sehingga dapat digambarkan kedalam kurva hipotesis :
Dengan menggunakan table koefisien distribusi yang menggunakan level of signifikan yaitu5 dengan didasarkan pada dk pembilang = k dan dk
penyebut = n-k-1 maka kesimpulan yang diambil : 1
Jika F
hitung
F
tabel
, maka Ho ditolak dan Ha diterima, berarti variasi yang berada pada model regresi menjelaskan variasi bebas secara
F hitung Daerah penolakan Ho
F tabel Daerah
Penerimaan Ho
lviii keseluruhan.
2 Jika F
hitung
≤ F
tabel
maka Ho diterima dan Ha ditolak, berarti variasi yang berada pada model regresi tidak berhasil menjelaskan variasi bebas
secara keseluruhan. Berdasarkan persentase pengaruh semua variabel independent terhadap
variabel dependen dapat diketahui besarnya koefisien determinasi R². besarnya koefisien determinasi adalah 0 sampai 1. Rumusnya adalah sebagai
berikut:
SSt SSe
SSe SSr
y y
y y
R -
= =
- -
- =
å å
1 1
2 2
2
Keterangan : SSr=jumlah kuadrat regresi
SSe=jumlah kuadrat kesalahan Sst=jumlah kuadrat total
Interprestasi terhadap hasil koefisien determinasi R²berarti: 1
Jika nilai koefisien determinasi R² semakin mendekati nolbesarnya koefisien determinasi R² suatu persamaan regresi, semakin kecil
pengaruh semua variable independent terhadap variable dependen dengan kata lain semakin kecil kemampuan model dalam
menjelaskan perubahan nilai variable dependen. 2
Jika nilai koefisien determinasi R² semakin mendekati satu besarnya koefisien determinasi R² suatu persamaan regresi,
semakin besar pengaruh semua variable independent terhadap variabel dependen dengan kata lain semakin besar kemampuan
lix model yang dihasilkan dalam menjelaskan perubahan nilai variabel
dependen.
d. Uji t