S ECOND -O RDER L AG R ESPONSES
S ECOND -O RDER L AG R ESPONSES
A second-order lag response exhibits oscillations that occur while the output signal is settling into its final steady-state value. This type of response is caused by a step change in the input or a disturbance in the process.
A second-order transfer function with lag is characterized by a second-order differential equation that is represented in Laplace form as:
Out 2 A ω
Hp n ()
In ( s + 2 ζω n s + ω n )
where: A = the gain
ω n = the resonant, or natural, frequency of oscillation in radians/second
ζ = the damping coefficient Figure 14-45 illustrates this second-order, oscillating response to a step
input. The frequency term ω n is the factor that determines how quickly the response oscillates above and below the desired outcome. The damping coefficient ζ is the factor that suppresses the oscillation over time, so that the response finally levels off at the desired outcome value. The complete
n represents the system gain (K sys ), which specifies the total amplitude of the response signal given its frequency.
numerator term A 2 ω
Damping – e ζω nt
Figure 14-45. Second-order response to a step input.
The amplitude of the oscillation of a second-order response dies off exponen- −ζω n tially due to the damping of the factor e t , which is part of the inverse
Laplace transform representation (time domain) of the system. If the damping −ζω n coefficient ( t ζ ) is equal to 0, then the term e will be 1 and the response will
oscillate indefinitely in a sinusoidal manner at a frequency of ω n, instead of leveling out. Thus, the damping coefficient determines the shape of the response (see Figure 14-46).
Industrial Text & Video Company 1-800-752-8398
www.industrialtext.com
S ECTION PLC Process Process Responses C HAPTER 4 Applications
and Transfer Functions 14
ω n t (in radians)
Figure 14-46. Damping coefficient effect on the oscillation of a second-order response.
Unlike a first-order system, a second-order system has two lag times ( τ 1 and τ 2 ), which are related to the frequency of oscillation ( ω n ). These two lag times combine to create a system second-order time constant τ sys , which is equal to:
sys =
As used in Laplace and time domain second-order response equations, the term ω n represents frequency. This frequency is expressed in radians per
second. However, this frequency can also be expressed in degrees. A second-order response is a sinusoidal response, meaning that it fluctuates above and below the final outcome (set point) value once every 2 π periods (see Figure 14-47). Therefore, the response period is characterized by the
equation ω n (see Figure 14-48). In degrees, this same period is expressed as
f n , where f n is the frequency in hertz. Therefore:
Figure 14-47. Sinusoidal response of a second-order system around the set point.
Industrial Text & Video Company 1-800-752-8398
www.industrialtext.com
S ECTION PLC Process Process Responses C HAPTER 4 Applications
and Transfer Functions 14
2 π or 1
Figure 14-48. Response period of a sinusoidal curve.
Solving for ω n yields: ω n = 2 π f n
So, the radian/sec frequency term ω n is equivalent to the degree frequency
term 2 π f n .
Parts
» An Industrial Text Company Publication Atlanta • Georgia • USA
» C HAPTER T HREE L OGI C C ON CEPT S
» 3 -3 P RINCIPLES OF B OOLEAN A LGEBRA AND L OGIC
» 3 -4 PLC C I RCU I T S AN D L OGI C C ON TACT S Y M BOLOGY
» C ONTACT S YMBOLS U SED IN PLC S
» L OADING C O N S I D E R AT I O N S
» M E M O RY C A PA C I T Y AND U T I L I Z AT I O N
» A P P L I C AT I O N M E M O RY
» D AT A T ABLE O R G A N I Z AT I O N
» 6 -2 I /O R ACK E NCLOSURES AND T ABLE M APPING
» I /O R ACK AND T ABLE M APPING E XAMPLE
» 6 -4 P L C I NSTRUCTIONS FOR D ISCRETE I NPUTS
» 6 -6 P L C I NSTRUCTIONS F OR D ISCRETE O UTPUTS
» 7 -3 A NALOG I NPUT D ATA R E P R E S E N TAT I O N
» 7 -4 A NALOG I NPUT D ATA H ANDLING
» 7 -6 O V E RV I E W OF A NALOG O UTPUT S IGNALS
» 7 -8 A NALOG O UTPUT D ATA R E P R E S E N TAT I O N
» 7 -9 A NALOG O UTPUT D ATA H ANDLING
» C HAPTER E IGHT S PECI AL F U N CT I ON I /O AN D S ERI AL C OM M U N I CAT I ON I N T ERFACI N G
» T HERMOCOUPLE I NPUT M ODULES
» E NCODER /C OUNTER I N T E R FA C E S
» S TEPPER M OTOR I N T E R FA C E S
» S ERVO M OTOR I N T E R FA C E S
» N ETWORK I N T E R FA C E M ODULES
» S ERIAL C O M M U N I C AT I O N
» I N T E R FA C E U SES AND A P P L I C AT I O N S
» 9 -3 L ADDER D IAGRAM F O R M AT
» 9 -5 L ADDER R E L AY P ROGRAMMING L ADDER S CAN E V A L U AT I O N
» P ROGRAMMING N O R M A L LY C LOSED I NPUTS
» 9 -1 0 A RITHMETIC I NSTRUCTIONS
» 9 -1 4 N ETWORK C O M M U N I C AT I O N I NSTRUCTIONS
» L ANGUAGES AND I NSTRUCTIONS
» F UNCTION B LOCK D IAGRAM (FBD)
» S EQUENTIAL F UNCTION C H A RT S (SFC)
» P ROGRAMMING L ANGUAGE N O TAT I O N
» P ROGRAMMING N O R M A L LY C LOSED T RANSITIONS
» D IVERGENCES AND C ONVERGENCES
» -1 C ONTROL T ASK D EFINITION
» C REAT I N G F LOWCH ART S AN D O U T PU T S EQU EN CES
» C ONFIGURING THE PLC S YSTEM
» S PECIAL I NPUT D EVICE P ROGRAMMING
» S IMPLE S TA R T /S TOP M OTOR C IRCUIT
» F O RWA R D /R EVERSE M OTOR I NTERLOCKING
» AC M OTOR D RIVE I N T E R FA C E
» L ARGE R E L AY S YSTEM M O D E R N I Z AT I O N
» A NALOG I NPUT C OMPARISON AND D ATA L INEARIZATION
» A NALOG P OSITION R EADING F ROM AN LV D T
» L INEAR I N T E R P O L AT I O N OF N ONLINEAR I NPUTS
» L ARGE B AT C H I N G C ONTROL A P P L I C AT I O N
» -7 S H O RT P ROGRAMMING E XAMPLES
» -1 B ASIC M EASUREMENT C ONCEPTS D ATA I N T E R P R E TAT I O N
» I NTERPRETING C OMBINED E RRORS
» B RIDGE C IRCUIT T ECHNIQUES
» R ESISTANCE T E M P E R AT U R E D ETECTORS ( RT D S )
» -1 P ROCESS C ONTROL B ASICS
» I N T E R P R E TAT I O N OF E RROR
» T RAN SFER F U N CT I ON S AN D T RAN SI EN T R ESPON SES
» D E R I V AT I V E L APLACE T RANSFORMS
» Out () s = ( )( ) In () s Hp () s
» S ECOND -O RDER L AG R ESPONSES
» D IRECT -A CTING C ONTROLLERS
» T WO -P OSITION D ISCRETE C ONTROLLERS
» T HREE -P OSITION D ISCRETE C ONTROLLERS
» -5 P R O P O RT I O N A L C ONTROLLERS (P M ODE )
» PV () s ( 1 + Hc Hp () s () s ) = SP Hc Hp () s () s () s
» CV () t = K I ∫ 0 Edt + CV ( t = 0 )
» CV ( t = 2 ) = K I 0 Edt + ∫ CV ( t = 1 )
» -7 P R O P O RT I O N A L -I NTEGRAL C ONTROLLERS (PI M ODE )
» -8 D E R I VAT I V E C ONTROLLERS (D M ODE ) S TANDARD D E R I V AT I V E C ONTROLLERS
» -9 P R O P O RT I O N A L -D E R I VAT I V E C ONTROLLERS (PD M ODE )
» -1 2 C ONTROLLER L OOP T UNING
» Z IEGLER –N ICHOLS O PEN -L OOP T UNING M ETHOD
» I TA E O PEN -L OOP T UNING M ETHOD
» S O F T WA R E T UNING M ETHODS
» R ULE -B ASED K NOWLEDGE R E P R E S E N T AT I O N
» S T AT I S T I C A L AND P ROBABILITY A N A LY S I S
» -1 I NTRODUCTION TO F UZZY L OGIC
» -2 H I S T O RY OF F UZZY L OGIC
» -3 F UZZY L OGIC O P E R AT I O N
» F U Z Z I F I C AT I O N C OMPONENTS
» F UZZY P ROCESSING C OMPONENTS
» D E F U Z Z I F I C AT I O N C OMPONENTS
» S YSTEM D ESCRIPTION AND O P E R AT I O N
» M EMBERSHIP F UNCTIONS AND R ULE C R E AT I O N
» IF A = PS AND B = NS THEN C = ZR IF A = PS AND B = NS THEN D = NS
» C HAPTER N INETEEN I /O B US N ET WORK S
» -4 D EVICE B US N ETWORKS B YTE -W IDE D EVICE B US N ETWORKS
» B IT -W IDE D EVICE B US N ETWORKS
» F IELDBUS P ROCESS B US N ETWORK
» P ROFIBUS P ROCESS B US N ETWORK
» I /O B US N ETWORK A DDRESSING
» P ANEL E NCLOSURES AND S YSTEM C OMPONENTS
» -3 N OISE , H E AT , AND V O LTA G E R EQUIREMENTS
» T ROUBLESHOOTING PLC I NPUTS
» -2 P L C S IZES AND S COPES OF A P P L I C AT I O N S
» I NPUT /O UTPUT C O N S I D E R AT I O N S
» C ONTROL S YSTEM O R G A N I Z AT I O N
» E Q U I VA L E N T L ADDER /L OGIC D IAGRAMS
Show more